分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.
解答:解:
sin7°+cos15°sin8° |
cos7°-sin15°sin8° |
=sin7°+cos(7°+8°)sin8° |
cos7°-sin(7°+8°)sin8° |
=
sin7°+(cos7°cos8°-sin7°sin8°)sin8° |
cos7°-(sin7°cos8°+sin8°cos7°)sin8° |
=
sin7°+cos7°cos8°sin8°-sin7°sin28° |
cos7°-sin7°sin8°cos8°-sin28°cos7° |
=
sin7°-sin7°sin28°+cos7°cos8°sin8° |
cos7°-sin28°cos7°-sin7°sin8°cos8° |
=
sin7°(1-sin28°)+cos7°cos8°sin8° |
cos7°(1-sin28°)-sin7°sin8°cos8° |
=
sin7°cos8°+cos7°sin8° |
cos7°cos8°-sin7°sin8° |
=
=tan15°=tan(45°-30°)=
tan45°-tan30° |
1+tan45°tan30° |
=
=
2-,
故答案为:
2- 点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.