分析 先设x、y分别为计划生产甲、乙两种混合肥料的车皮数,根据题意列出约束条件,再利用线性规划的方法求解最优解即可.
解答 解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:
$\left\{\begin{array}{l}{4x+y≤10}\\{18x+15y≤66}\\{x≥0,y≥0}\\{x,y∈Z}\end{array}\right.$
再设分别生产甲、乙两种肥料各x、y车皮产生的利润为z=10000x+5000y=5000(2x+y),
由$\left\{\begin{array}{l}{4x+y=10}\\{18x+15y=66}\end{array}\right.$得两直线的交点M(2,2).
令t=2x+y,当直线L:y=-2x+t经过点M(2,2)时,它在y轴上的截距有最大值为6,此时z=30000.
故分别生产甲、乙两种肥料各2车皮时产生的利润最大为30万元.
故答案为:30万元.
点评 利用线性规划知识解决的应用题.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
分组(分数) | 频数 | 频率 |
[60,70) | 0.12 | |
[70,80) | 20 | |
[80,90) | 0.24 | |
[90,100] | 12 | |
合计 | 50 | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com