精英家教网 > 高中数学 > 题目详情

(本小题满分13分)已知函数)在区间上有最大值和最小值.设
(1)求的值;
(2)若不等式上有解,求实数的取值范围.

(1)(2)

解析试题分析:(1)先求出函数g(x)的对称轴x=1,则,解之即可.
(2)首先求出的解析式,则,再由二次函数的性质求出即可解得k的取值范围.
试题解析:(1)
因为,所以在区间上是增函数,故,解得
(2)由已知可得
所以可化为
化为,令,则,因,故
,因为,故
所以的取值范围是
考点:1.二次函数的性质;2.基本不等式的性质;3.指数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,.
(Ⅰ).求表达式;
(Ⅱ).若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ).试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的减函数,满足.
(1)求证:
(2)若,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,试判断此函数上的单调性,并求此函数
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数.
(1)判断函数的奇偶性;
(2)若当时,恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
若函数上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,在处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数。
(1)求实数a的值;
(2)判断函数在R上的单调性并用定义法证明;
(3)若函数的图像经过点,这对任意不等式恒成立,求实数m的范围。

查看答案和解析>>

同步练习册答案