精英家教网 > 高中数学 > 题目详情
如图,正三棱柱.
(1)求证:平面
(2)求证:
(3)若.
(1)证明见解析(2)证明见解析(3)
(1)证明:.
.
.
(2)证明:连结.
.
又因为E是AC的中点,.
.
(3)作.
.

..
. .
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:四棱锥P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 点F为线段PC的中点,
(1)求证: BF∥平面PAD;
(2) 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.
(1)求二面角的大小;
(2)当的值为多少时,为直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等边ABC的A∈平面α,B、C到面α的距离分别为2a、a,且AB=BC=AC=b.
(1)求面ABC与α所成二面角的大小;
(2)若B、C到α的距离分别为3a、a呢?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB∶AD=∶1,F是AB的中点.
  (1)求VC与平面ABCD所成的角;
  (2)求二面角V-FC-B的度数;
  (3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是正方形的四棱锥,平面⊥平面===2.
(I)求证:
(II)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量满足,则的夹角为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案