精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中,设

1)如果为奇函数,求实数满足的条件;

2)在(1)的条件下,若函数在区间上为增函数,求的取值范围;

3)若对任意的恒有成立.证明:当时,成立.

【答案】(1);(2;(3)见解析

【解析】

(1)根据函数为奇函数,利用奇函数对应的表达式,得到关于的关系式,分析等式恒成立的条件即可得到满足的条件;

(2)利用函数单调性的定义,求解出关于的不等式,即可求解出的取值范围;

(3)得到间的不等关系,再根据作差法以及不等式的性质证明时成立.

1,设的定义域为

为奇函数,∴对于任意成立.

即:化简得:

因对于任意都成立,

.

2)由(1)知

上为增函数,

∴任取时,恒成立.

即任取时,成立,

也就是成立.

,即的取值范围是

3)因为任意的恒有成立,

所以对任意的

恒成立.

所以判别式

从而,∴,且

因此

故当时,有

即当时,成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.(单位:m.

1)当点与点重合时,试确定点的位置;

2)求关于的函数关系式;

3)试确定点的位置,使直路的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是具有下列性质的函数的全体:存在实数对,使得对定义域内任意实数x都成立.

1)判断函数,是否属于集合;

2)若函数具有反函数,是否存在相同的实数对,使得同时属于集合若存在,求出相应的;若不存在,说明理由;

3)若定义域为的函数属于集合,且存在满足有序实数对;当时,的值域为,求当时函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论函数的单调区间;

(Ⅱ)若函数处取得极值,对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数.

1)求实数的值;

2)判断函数上的单调性,并给出证明;

3)当时,函数的值域是,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

日均浓度

空气质量级别

一级

二级

三级

四级

五级

六级

空气质量类型

轻度污染

中度污染

重度污染

严重污染

甲、乙两城市20132月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)

(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;

(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.

1)求R的方程;

2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点QQ不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对其定义域内的任意,当时总有,则称为紧密函数,例如函数是紧密函数,下列命题:

紧密函数必是单调函数;函数时是紧密函数;

函数是紧密函数;

若函数为定义域内的紧密函数,,则

若函数是紧密函数且在定义域内存在导数,则其导函数在定义域内的值一定不为零.

其中的真命题是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为(

A.22药物单位B.20药物单位C.12药物单位D.10药物单位

查看答案和解析>>

同步练习册答案