【题目】已知函数,,其中,设.
(1)如果为奇函数,求实数、满足的条件;
(2)在(1)的条件下,若函数在区间上为增函数,求的取值范围;
(3)若对任意的恒有成立.证明:当时,成立.
【答案】(1),;(2);(3)见解析
【解析】
(1)根据函数为奇函数,利用奇函数对应的表达式,得到关于的关系式,分析等式恒成立的条件即可得到满足的条件;
(2)利用函数单调性的定义,求解出关于的不等式,即可求解出的取值范围;
(3)由得到间的不等关系,再根据作差法以及不等式的性质证明在时成立.
(1),设的定义域为,
∵为奇函数,∴对于任意,成立.
即:化简得:,
因对于任意都成立,
∴,
即,.
(2)由(1)知,,
∵在上为增函数,
∴任取时,恒成立.
即任取时,成立,
也就是成立.
∴,即的取值范围是.
(3)因为任意的恒有成立,
所以对任意的,,
即恒成立.
所以判别式,
从而,∴,且,
因此且.
故当时,有.
即当时,成立.
科目:高中数学 来源: 题型:
【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.设(单位:m).
(1)当点与点重合时,试确定点的位置;
(2)求关于的函数关系式;
(3)试确定点的位置,使直路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是具有下列性质的函数的全体:存在实数对,使得对定义域内任意实数x都成立.
(1)判断函数,是否属于集合;
(2)若函数具有反函数,是否存在相同的实数对,使得与同时属于集合若存在,求出相应的;若不存在,说明理由;
(3)若定义域为的函数属于集合,且存在满足有序实数对和;当时,的值域为,求当时函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
日均浓度 | ||||||
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对其定义域内的任意,,当时总有,则称为紧密函数,例如函数是紧密函数,下列命题:
紧密函数必是单调函数;函数在时是紧密函数;
函数是紧密函数;
若函数为定义域内的紧密函数,,则;
若函数是紧密函数且在定义域内存在导数,则其导函数在定义域内的值一定不为零.
其中的真命题是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为( )
A.22药物单位B.20药物单位C.12药物单位D.10药物单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com