精英家教网 > 高中数学 > 题目详情
9.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),则a2011的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

分析 由已知分别求出数列的前几项,得到数列{an}是以3为周期的周期数列,则答案可求.

解答 解:∵a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),
∴${a}_{2}=\frac{1}{1-{a}_{1}}=\frac{1}{1-\frac{1}{2}}=2$,${a}_{3}=\frac{1}{1-{a}_{2}}=\frac{1}{1-2}=-1$,
${a}_{4}=\frac{1}{1-{a}_{3}}=\frac{1}{1-(-1)}=\frac{1}{2}$,

由上可知,数列{an}是以3为周期的周期数列,
∴${a}_{2011}={a}_{3×670+1}={a}_{1}=\frac{1}{2}$.
故选:B.

点评 本题考查数列递推式,关键是对数列周期的发现,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知x满足不等式log${\;}_{\frac{1}{4}}$x2+log2(3x-2)≥0,求函数f(x)=(log2$\frac{x}{4}$)•(log2$\frac{x}{2}$)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一个周期内,当x=$\frac{π}{4}$时y取最大值1,当x=$\frac{7π}{12}$时,y取最小值-1.
(1)求函数的解析式y=f(x);
(2)求函数的对称轴、对称中心、单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知映射$f:P(m,n)→{P^2}(\sqrt{m},\sqrt{n})(m≥0,n≥0)$,设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M2,当点M在线段AB上从点A开始运动到点B结束时,点M的对应点M2所经过的路线长度为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线l的斜率是(  )
A.6B.$\frac{2}{3}$C.$-\frac{3}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.“渐升数”是指每个数字比它左边的数字大的正整数(如1458),若把四位“渐升数”按从小到大的顺序排列,则第22个数为1345.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在二项式${({\sqrt{x}-\frac{3}{x}})^n}$的展开式中,各项系数之和为A,各项二项式系数之和为B,且A+B=128.则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出下列命题:
(1)一组对边和一组对角分别相等的四边形是平行四边形;
(2)两组对角的内角平分线分别平行的四边形是平行四边形;
(3)一组对边中点间的距离等于另一组对边长和的一半的四边形是平行四边形;
(4)两条对角线都平分四边形面积的四边形是平行四边形.
 其中真命题是(2),(4).(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A、B、C为锐角△ABC的内角,且2tanB=tanA+tanC,f(cos2C)=$\frac{ta{n}^{2}A}{9}$.
(1)求f(x)的解析式;
(2)求f(tanB)的最小值.

查看答案和解析>>

同步练习册答案