精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是直角梯形,,侧面底面,且为等腰直角三角形,的中点.

1)求证:平面

2)求直线与平面所成线面角的正切值.

【答案】1)证明见解析;(2.

【解析】

1)取的中点,连接,证明出四边形为平行四边形,可得出,再由线面平行的判定定理可证得结论成立;

2)取的中点,连接,推导出平面平面,可得出直线与平面所成的角为,并计算出,由此可得出结果.

1)如图所示,取的中点,连接

分别为的中点,则

由已知条件可知

所以,四边形为平行四边形,

平面平面,因此,平面

2)取的中点,连接

,则是等边三角形,

的中点,

平面平面,平面平面平面平面

所以直线与平面所成的角为

同理可得平面平面

,所以,

因此,直线与平面所成线面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对任意实数,方程的解的个数为偶数(可以是0个,但不能是无数个),则称为“偶的函数”.证明:

(1)任何多项式均不是偶的函数;

(2)存在连续函数是偶的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设n为一个正整数,三维空间内的点集S满足下述性质:

(1).空间内不存在n个平面,使得点集S中的每个点至少在这n个平面中的一个平面上;

(2).对于每个点,均存在n个平面,使得中的每个点均至少在这n个平面中的一个平面上.

求点集S中点的个数的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校2011年到2019年参加北约”“华约考试而获得加分的学生人数(每位学生只能参加北约”“华约中的一种考试)可以通过以下表格反映出来,(为了方便计算,将2011年编号为12012年编号为2,依此类推)

年份x

1

2

3

4

5

6

7

8

9

人数y

2

3

5

4

5

7

8

10

10

1)求这九年来,该校参加北约”“华约考试而获得加分的学生人数的平均数和方差;

2)根据最近五年的数据,利用最小二乘法求出yx的线性回归方程,并依此预测该校2020年参加北约”“华约考试而获得加分的学生人数.(最终结果精确至个位)

参考数据:回归直线的方程是,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,为椭圆的上焦点,上一点轴上方,且.

(1)求直线的方程;

(2)为直线异于的交点,的弦的中点分别为,若在同一直线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)经过点,且两个焦点的坐标依次为.

(1)求椭圆的标准方程;

(2)设是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,若,证明:直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:

(1)估计五校学生综合素质成绩的平均值;

(2)某校决定从本校综合素质成绩排名前名同学中,推荐人参加自主招生考试,若已知名同学中有名理科生,2名文科生,试求这3人中含文科生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示四棱锥PABCDAP平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证AP平面BEF

(2)求证BE平面PAC.

查看答案和解析>>

同步练习册答案