精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C于A、B两点,若△AF1B的周长为12,则C的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1

分析 通过椭圆定义可知△AF1B的周长即为4a,进而利用离心率的值计算可得结论.

解答 解:由椭圆定义可知:2a+2a=12,即a=3,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{3}$,
解得:b2=6,
∴椭圆C的方程为:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1,
故选:D.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.数列{an}满足Sn=2n+2an(n∈N*).
(1)计算a1、a2、a3,a4
(2)有同学猜想an=2-2α;请根据你的计算确定α的值,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F为抛物线y2=x的焦点,点A、B在该抛物线上且位于x轴两侧,$\overrightarrow{OA}$$•\overrightarrow{OB}$=6(O为坐标原点),则△ABO与△AOF面积之和的最小值为(  )
A.4B.$\frac{3\sqrt{13}}{2}$C.$\frac{17\sqrt{2}}{4}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列a0=1,an=nan-1+1,用框图和语句表示算法,输出使an≤50的最大的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正方形ABCD的边长为8,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥M-ABC的体积的最大值是32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥P-ABCD中,底面ABCD为边长为a的菱形,∠BAD=60°,△PAD为正三角形,平面PAD⊥平面ABCD,E、H分别为BC、AD的中点,F在PC边上,且PF=2FC.
(1)求证:PH⊥底面ABCD;
(2)求证:PA∥平面DEF;
(3)求三棱锥C-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=x3在点(1,1)处的切线方程为y=3x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等比数列{an}的各项均为正数,且a5=a4+2a3,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是(  )
A.$\frac{3}{2}$B.$\frac{8}{3}$C.$\frac{5}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
(1)sin213°+cos217°-sin 13°cos 17°;
(2)sin215°+cos215°-sin 15°cos 15°;
(3)sin218°+cos212°-sin 18°cos 12°;
(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;
(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

同步练习册答案