精英家教网 > 高中数学 > 题目详情

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

【答案】(1) 的取值范围为;(2) 的取值范围为.

【解析】试题分析:(1)方程在一个区间上有解,可以转化为有解,研究该函数的单调性和图像使得常函数和该函数有交点即可。(2)该题可以转化为当时, 恒成立研究这个函数的单调性和最值即可。

(1)方程即为

∴当时, 变化情况如下表:

1

3

+

0

-

极大值

∴当时,

的取值范围为

(2)依题意,当时, 恒成立

,

,则当时,

∴函数上递增,∵,

存在唯一的零点

且当时, ,当时,

则当时, ,当时, .

上递减,在上递增,从而.

,两边取对数得

,∴,∴

即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD中,PD底面ABCDAB//DCADDCAB=AD=1DC=2PD=M为棱PB的中点.

(1)证明:DM平面PBC

(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,奇函数的个数为( ) ①y=x2sinx ②y=sinxx ③y=xcosxx ④y=tanx
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2﹣ax(a∈R)
(1)a=3时,求函数f(x)的单调区间;
(2)若f(x)≤2x2恒成立,求实数a的取值范围;
(3)求证;lnn> + +1 +…+ (n∈N+)且n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题正确的是(
A.α,β都是第一象限角,若cosα>cosβ,则sinα>sinβ
B.α,β都是第二象限角,若sinα>sinβ,则tanα>tanβ
C.α,β都是第三象限角,若cosα>cosβ,则sinα>sinβ
D.α,β都是第四象限角,若sinα>sinβ,则tanα>tanβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求证{an+3}是等比数列
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和为Sn , 且满足
(1)计算a1 , a2 , a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

同步练习册答案