精英家教网 > 高中数学 > 题目详情
如图,已知曲线C:(a>0),曲线C与x轴相交于A、B两点,直线l过点B且与x轴垂直,点S是直线l上异于点B的任意一点,线段SA与曲线C交于点T,线段TB与以线段SB为直径的圆相交于点M.
(I)若点T与点M重合,求的值;
(II)若点O、M、S三点共线,求曲线C的方程.

【答案】分析:(I)设T(x,y),S(a,y1),由点A,T,S共线,确定直线方程,求得S的坐标,利用点T与点M重合时,有BT⊥AS,kSA•kBT=-1,得a的值,再利用=AB2,即可求得结论;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS,由此可求a的值,从而可得曲线C的方程.
解答:解:(I)设T(x,y),S(a,y1),则,所以
由点A,T,S共线有:=,得:,即S(a,
当点T与点M重合时,有BT⊥AS,kSA•kBT=×=-1,得a=1.
=AB2=(2a)2=4;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS
∴kSO•kBT=×=-1,∴a2=2
∴所求曲线C的方程为
点评:本题考查椭圆的标准方程,考查向量知识的运用,解题的关键是确定a的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1).设x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求数列{an}的通项公式;
(III)设△PiQiQi+1(i∈N*)和面积为Si,记f(n)=
n
i=1
Si
,求证f(n)<
1
6
.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
在点P(1,1)处的切线与x轴交于点Q1,过点Q1作x轴的垂线交曲线C于点P1,曲线C在点P1处的切线与x轴交于点Q2,过点Q2作x轴的垂线交曲线C于点P2,…,依次得到一系列点P1、P2、…、Pn,设点Pn的坐标为(xn,yn)(n∈N*).
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)求三角形OPnPn+1的面积S△OPnPn+1
(Ⅲ)设直线OPn的斜率为kn,求数列{nkn}的前n项和Sn,并证明Sn
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南京二模)如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xn,bn=yn-yn+1
(Ⅰ)求Q1,Q2的坐标;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记数列{an•bn}的前n项和为Sn,求证:Sn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再过点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)设,x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求点Q1、Q2的坐标;
(2)求数列{an} 的通项公式;
(3)记数列{an•yn+1} 的前n项和为Sn,求证sn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y 轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn
(Ⅰ) 求a2与an
(Ⅱ) 求Sn,并证明Sn
13

查看答案和解析>>

同步练习册答案