精英家教网 > 高中数学 > 题目详情
8.变量x、y满足条件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x>-1}\end{array}\right.$,则(x-2)2+y2的最小值为5.

分析 由约束条件作出可行域,利用(x-2)2+y2的几何意义,即可行域内的动点与定点M(2,0)距离的平方求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x>-1}\end{array}\right.$作出可行域如图,

(x-2)2+y2的几何意义为可行域内的动点与定点M(2,0)距离的平方,
由图可知,(x-2)2+y2的最小值为$|MA{|}^{2}=(\sqrt{5})^{2}=5$.
故答案为:5.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知平面上三个点坐标为A(3,7),B(4,6),C(1,-2),求点D的坐标,使得这四个点为构成平行四边形的四个顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一次射击训练中,甲、乙两名运动员各射击一次.设命题p是“甲运动员命中10环”,q是“乙运动员命中10环”,则命题“至少有一名运动员没有命中10环”可表示为(  )
A.p∨qB.(¬p)∧(¬q)C.(¬p)∨(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=|x2-a2|(a>0),f(m)=f(n),且m<n<0,若点P(m,n)到直线x+y-8=0的最大距离为$6\sqrt{2}$时,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设{an}是等比数列,公比q=2,Sn为{an}的前n项和.记${T_n}=\frac{{17{S_n}-{S_{2n}}}}{{{a_{n+1}}}}$,n∈N*,设Tn为数列{Tn}最大项,则n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x+y=2,x>0,y>0,$\frac{1}{x}$+$\frac{2}{y}$的最小值为$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:“任意的x∈R,存在m∈R,4x-2x+1-m=0且命题¬p是真命题,则实数m的取值范围是(  )
A.m>1B.m≥1C.m<-1D.m≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)满足对任意实数x,y,f(x+y)=f(x)+f(y),且f(1)=1.证明:如果对任意x>0,f(x)>0,则符合条件的f(x)是唯一的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P,使得csin∠PF1F2=asin∠PF2F1,则该曲线的离心率的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{3}$]C.(1,$\sqrt{2}$+1]D.(1,$\sqrt{3}$+1]

查看答案和解析>>

同步练习册答案