·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²QµÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬Çó³öa=$\sqrt{2}$£¬ÉèP£¨x0£¬y0£©£¬Í¨¹ýÖ±ÏßPAÓëOMµÄбÂÊÖ®»ýºãΪ£¬-$\frac{1}{2}$£®»¯¼òÇó³öb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½£¬ÄÜÇó³öÏ߶ÎAB³¤µÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª2a=2$\sqrt{2}$£¬Ôòa=$\sqrt{2}$£¬ÉèP£¨x0£¬y0£©£¬
¡ßÖ±ÏßPAÓëOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£¬¡à$\frac{\frac{{y}_{0}}{2}}{\frac{{x}_{0}+\sqrt{2}}{2}}$¡Á$\frac{{y}_{0}}{{x}_{0}-\sqrt{2}}$=-$\frac{1}{2}$£¬
¡à$\frac{{x}_{0}^{2}}{2}$+${y}_{0}^{2}$=1£¬
¡àb=1£¬
ÍÖÔ²CµÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=k£¨x+1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£º$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º£¨2k2+1£©x2+4k2x+2k2-2=0£¬
Ôòx1+x2=-$\frac{4{k}^{2}}{2{k}^{2}+1}$£¬x1x2=$\frac{2{k}^{2}-2}{2{k}^{2}+1}$£¬
Ôòy1+y2=k£¨x1+x2+2£©=$\frac{2k}{2{k}^{2}+1}$£¬
¡àABÖеãQ£¨-$\frac{2{k}^{2}}{2{k}^{2}+1}$£¬$\frac{k}{2{k}^{2}+1}$£©£¬
QNÖ±Ïß·½³ÌΪ£ºy-$\frac{k}{2{k}^{2}+1}$=-$\frac{1}{k}$£¨x+$\frac{2{k}^{2}}{2{k}^{2}+1}$£©=-$\frac{1}{k}$x-$\frac{2k}{2{k}^{2}+1}$£¬
¡àN£¨-$\frac{{k}^{2}}{2{k}^{2}+1}$£¬0£©£¬ÓÉÒÑÖªµÃ-$\frac{1}{4}$£¼-$\frac{{k}^{2}}{2{k}^{2}+1}$£¼0£¬
¡à0£¼2k2£¼1£¬
¡à|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨-\frac{4{k}^{2}}{2{k}^{2}+1}£©^{2}-4¡Á\frac{2{k}^{2}-2}{2{k}^{2}+1}}$
=$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{2{k}^{2}+1}$=$\sqrt{2}$£¨1+$\frac{1}{2{k}^{2}+1}$£©£¬
¡ß$\frac{1}{2}$£¼£¼12k2+1£¼1£¬
¡à|AB|¡Ê£¨$\frac{3\sqrt{2}}{2}$£¬2$\sqrt{2}$£©£¬
Ï߶ÎAB³¤µÄÈ¡Öµ·¶Î§£¨$\frac{3\sqrt{2}}{2}$£¬2$\sqrt{2}$£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Ï߶㤵ÄÈ¡Öµ·¶Î§µÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÄÓ¦Ó㬿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ï룬½âÌâʱҪעÒâΤ´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1511 | B£® | 1515 | C£® | 1521 | D£® | 1523 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | a£¼b£¼c | B£® | b£¼a£¼c | C£® | a£¼c£¼b | D£® | c£¼b£¼a |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ca£¾cb | B£® | ac£¼bc | C£® | $\frac{a}{a-c}£¾\frac{b}{b-c}$ | D£® | logac£¾logbc |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{2}c{m^3}$ | B£® | 1cm3 | C£® | $\frac{3}{2}c{m^3}$ | D£® | 3cm3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | [-1£¬$\frac{1}{4}$] | B£® | [$\frac{1}{4}$£¬1] | C£® | [-2£¬$\frac{1}{4}$] | D£® | [$\frac{1}{3}$£¬1] |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com