5£®ÒÑÖªF1£¬F2·Ö±ðÊdz¤Ö᳤Ϊ2$\sqrt{2}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬A1£¬A2ÊÇÍÖÔ²CµÄ×óÓÒ¶¥µã£¬PΪÍÖÔ²ÉÏÒìÓÚA1£¬A2µÄÒ»¸ö¶¯µã£¬OΪ×ø±êÔ­µã£¬µãMΪÏ߶ÎPA2µÄÖе㣬ÇÒÖ±ÏßPA2ÓëOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè¹ýµãF1ÇÒ²»Óë×ø±êÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬Ï߶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãN£¬µãNºá×ø±êµÄÈ¡Öµ·¶Î§ÊÇ£¨-$\frac{1}{4}$£¬0£©£¬ÇóÏ߶ÎAB³¤µÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²QµÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬Çó³öa=$\sqrt{2}$£¬ÉèP£¨x0£¬y0£©£¬Í¨¹ýÖ±ÏßPAÓëOMµÄбÂÊÖ®»ýºãΪ£¬-$\frac{1}{2}$£®»¯¼òÇó³öb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½£¬ÄÜÇó³öÏ߶ÎAB³¤µÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª2a=2$\sqrt{2}$£¬Ôòa=$\sqrt{2}$£¬ÉèP£¨x0£¬y0£©£¬
¡ßÖ±ÏßPAÓëOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£¬¡à$\frac{\frac{{y}_{0}}{2}}{\frac{{x}_{0}+\sqrt{2}}{2}}$¡Á$\frac{{y}_{0}}{{x}_{0}-\sqrt{2}}$=-$\frac{1}{2}$£¬
¡à$\frac{{x}_{0}^{2}}{2}$+${y}_{0}^{2}$=1£¬
¡àb=1£¬
ÍÖÔ²CµÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=k£¨x+1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£º$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º£¨2k2+1£©x2+4k2x+2k2-2=0£¬
Ôòx1+x2=-$\frac{4{k}^{2}}{2{k}^{2}+1}$£¬x1x2=$\frac{2{k}^{2}-2}{2{k}^{2}+1}$£¬
Ôòy1+y2=k£¨x1+x2+2£©=$\frac{2k}{2{k}^{2}+1}$£¬
¡àABÖеãQ£¨-$\frac{2{k}^{2}}{2{k}^{2}+1}$£¬$\frac{k}{2{k}^{2}+1}$£©£¬
QNÖ±Ïß·½³ÌΪ£ºy-$\frac{k}{2{k}^{2}+1}$=-$\frac{1}{k}$£¨x+$\frac{2{k}^{2}}{2{k}^{2}+1}$£©=-$\frac{1}{k}$x-$\frac{2k}{2{k}^{2}+1}$£¬
¡àN£¨-$\frac{{k}^{2}}{2{k}^{2}+1}$£¬0£©£¬ÓÉÒÑÖªµÃ-$\frac{1}{4}$£¼-$\frac{{k}^{2}}{2{k}^{2}+1}$£¼0£¬
¡à0£¼2k2£¼1£¬
¡à|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨-\frac{4{k}^{2}}{2{k}^{2}+1}£©^{2}-4¡Á\frac{2{k}^{2}-2}{2{k}^{2}+1}}$
=$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{2{k}^{2}+1}$=$\sqrt{2}$£¨1+$\frac{1}{2{k}^{2}+1}$£©£¬
¡ß$\frac{1}{2}$£¼£¼12k2+1£¼1£¬
¡à|AB|¡Ê£¨$\frac{3\sqrt{2}}{2}$£¬2$\sqrt{2}$£©£¬
Ï߶ÎAB³¤µÄÈ¡Öµ·¶Î§£¨$\frac{3\sqrt{2}}{2}$£¬2$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Ï߶㤵ÄÈ¡Öµ·¶Î§µÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÄÓ¦Ó㬿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ï룬½âÌâʱҪעÒâΤ´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈçͼËùʾ£¬Ä³È˲¦Í¨Á˵绰£¬×¼±¸ÊÖ»ú³äÖµÐëÈçϲÙ×÷£¨¡¡¡¡£©
A£®1511B£®1515C£®1521D£®1523

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯ÊýµÄ¶¨ÒåÓòΪR£¬ÇÒÂú×ãÏÂÁÐÈý¸öÌõ¼þ£º
¢Ù¶ÔÈÎÒâµÄx1£¬x2¡Ê[4£¬8]£¬µ±x1£¼x2ʱ£¬¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¾0£»
¢Úf£¨x+4£©=-f£¨x£©£»
¢Ûy=f£¨x+4£©ÊÇżº¯Êý£»
Èôa=f£¨6£©£¬b=f£¨11£©£¬c=f£¨2017£©£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a£¼b£¼cB£®b£¼a£¼cC£®a£¼c£¼bD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªsin£¨$\frac{¦Ð}{3}$-¦Á£©=$\frac{1}{3}$£¨0£¼¦Á£¼$\frac{¦Ð}{2}$£©£¬Ôòsin£¨$\frac{¦Ð}{6}$+¦Á£©=$\frac{2\sqrt{2}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬Èç¹û´æÔÚÇø¼ä[m£¬n]⊆D£¬ÆäÖÐm£¼n£¬Í¬Ê±Âú×㣺¢Ùf£¨x£©ÔÚ[m£¬n]ÄÚÊǵ¥µ÷º¯Êý£»¢Úµ±¶¨ÒåÓòÊÇ[m£¬n]ʱ£¬f£¨x£©µÄÖµÓòÒ²ÊÇ[m£¬n]£®
Ôò³Æº¯Êýf£¨x£©ÊÇÇø¼ä[m£¬n]Éϵġ°±£Öµº¯Êý¡±£¬Çø¼ä[m£¬n]³ÆΪ¡°±£ÖµÇø¼ä¡±£®
£¨1£©ÇóÖ¤£ºº¯Êýg£¨x£©=x2-2x²»ÊǶ¨ÒåÓò[0£¬1]Éϵġ°±£Öµº¯Êý¡±£®
£¨2£©Èôº¯Êýf£¨x£©=2+$\frac{1}{a}$-$\frac{1}{{a}^{2}x}$£¨a¡ÊR£¬a¡Ù0£©ÊÇÇø¼ä[m£¬n]Éϵġ°±£Öµº¯Êý¡±£¬ÇóaµÄÈ¡Öµ·¶Î§£®
£¨3£©¶Ô£¨2£©Öк¯Êýf£¨x£©£¬Èô²»µÈʽ|a2f£¨x£©|¡Ü2x¶Ôx¡Ý1ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª0£¼c£¼1£¬a£¾b£¾1£¬ÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®ca£¾cbB£®ac£¼bcC£®$\frac{a}{a-c}£¾\frac{b}{b-c}$D£®logac£¾logbc

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬µ×Ãæ¡÷ABCÊǵȱßÈý½ÇÐΣ¬ÇÒAA1¡ÍƽÃæABC£¬DΪABµÄÖе㣮
£¨¢ñ£© ÇóÖ¤£ºÖ±ÏßBC1¡ÎƽÃæA1CD£»
£¨¢ò£© ÈôAB=BB1=2£¬EÊÇBB1µÄÖе㣬ÇóÈýÀâ׶A1-CDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}c{m^3}$B£®1cm3C£®$\frac{3}{2}c{m^3}$D£®3cm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+x£¬x¡Ü1}\\{lo{g}_{\frac{1}{3}}x£¬x£¾1}\end{array}\right.$£¬Èô¶ÔÈÎÒâµÄx¡ÊR£¬²»µÈʽf£¨x£©¡Ü$\frac{5}{4}$m-m2ºã³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®[-1£¬$\frac{1}{4}$]B£®[$\frac{1}{4}$£¬1]C£®[-2£¬$\frac{1}{4}$]D£®[$\frac{1}{3}$£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸