【题目】函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于( )
A.2
B.4
C.6
D.8
【答案】D
【解析】函数y1= , y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图
当1<x≤4时,y1<0
而函数y2在(1,4)上出现1.5个周期的图象,
在和上是减函数;
在和上是增函数.
∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H
相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D
且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的横坐标之和为8
故选D.
y1=的图象由奇函数y=的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案。
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin()=2 .
(Ⅰ)求曲线C和直线l在该直角坐标系下的普通方程;
(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P的坐标为(﹣2,2),求|PB|+|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的是________(填序号).
①若,分别是平面α,β的一个法向量,则∥α∥β;
②若,分别是平面α,β的一个法向量,则α⊥β·=0;
③若是平面α的一个法向量,与平面α共面,则·=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),若在定义域内存在x0 , 使得f(﹣x0)=﹣f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx﹣b必有局部对称点;
(2)是否存在常数m,使得函数f(x)=4x﹣m2x+1+m2﹣3有局部对称点?若存在,求出m的范围,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为,右焦点为 (1) 求椭圆的标准方程;(2) 若直线经过点且与椭圆有且仅有一个公共点,过点作直线交椭圆于另一点 ①证明:当直线与直线的斜率,均存在时,.为定值;②求面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x+sinxcosx.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[0,]时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1 , F2为焦点,设图示①②③中的双曲线的离心率分别为e1 , e2 , e3、则e1 , e2 , e3的大小关系为( )
A.e1>e2>e3
B.e1<e2<e3
C.e2=e3<e1
D.e1=e3>e2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数a、b、c,有下列命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是________.(填写序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com