【题目】在四棱锥中,,,是的中点,是等边三角形,平面平面.
(Ⅰ)求证:平面;
(Ⅱ)求二面角大小的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)
【解析】
(Ⅰ)取的中点为,连结,,,设交于,连结.根据题意可得到四边形与四边形均为菱形,即可说明,再由题意说明平面,即,又,即可说明,即可说明平面.
(Ⅱ)取的中点为,以为空间坐标原点,分别以,,的方向为轴、轴、轴的正方向,建立空间直角坐标系.令,则可写出,.即可求出平面的法向量,再由(1)知平面的法向量,代入公式即可求出二面角的平面角的余弦值,方可求出二面角大小的正弦值.
解:(Ⅰ)取的中点为,连结,,,设交于,连结.
∵,
∵四边形与四边形均为菱形
∴,∵
∵为等边三角形,为中点
∴
∵平面平面且平面平面.
平面且
∴平面
∵平面
∴
∵,分别为,的中点∴
∴
又∵
,平面
平面
(Ⅱ)取的中点为,以为空间坐标原点,分别以,,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系.
设,则,,,,.
,.
设平面的一法向量.
由.
令,则.
由(Ⅰ)可知,平面的一个法向量.
∴二面角的平面角的余弦值.
二面角大小的正弦值为.
科目:高中数学 来源: 题型:
【题目】为迎接双流中学建校周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有()
A.种B.种C.种D.种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为,斜率为的动直线交椭圆于、两点,以线段的中点为圆心,为直径作圆.
(1)求圆心的轨迹方程,并描述轨迹的图形;
(2)若圆经过原点,求直线的方程;
(3)证明:圆内含或内切于圆.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数和图象的对称轴完全相同,若,则y=g(x)的值域是( )
A. [-1,2] B. [-1,3] C. [,0,2] D. [0,,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆1()的离心率为,且经过点,直线与椭圆E交于B,C两点(B,C不与A重合).
(1)求椭圆E的方程;
(2)若O,B,C三点不共线时(O为坐标原点),求面积的最大值;
(3)设直线AB,AC与轴的交点分别为P,Q,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三个不同平面、、和直线,下面有四个命题:
①若,,,则;
②直线上有两点到平面的距离相等,则;
③,,则;
④若直线不在平面内,,,则.
则正确命题的序号为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com