精英家教网 > 高中数学 > 题目详情

【题目】已知
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而 ,求边BC的最小值.

【答案】
(1)解: =

故所求单调递增区间为


(2)解:由

,即 ,∴bc=2,(10分)

又△ABC中, =


【解析】利用和差角及二倍角公式对函数化简可得 (1)令 ,解不等式可得答案,(2)由f(A)= 及0<A<π可得 ,由 ,利用向量数量积的定义可得,bc=2,利用余弦定理可得可得又△ABC中

= ,从而可求

【考点精析】本题主要考查了正弦函数的单调性的相关知识点,需要掌握正弦函数的单调性:在上是增函数;在上是减函数才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次试验中,有两个试验数据统计的结果如下面的表格1.

(1)在给出的坐标系中画出的散点图; 并判断正负相关;

(2)填写表格2,然后根据表格2的内容和公式求出的回归直线方程,并估计当10的值是多少?(公式:

1

2

3

4

5

2

3

4

4

5

表1

表格2

序号

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=cos(2x+ )的图象向左平移 个单位后,得到f(x)的图象,则(
A.f(x)=﹣sin2x
B.f(x)的图象关于x=﹣ 对称
C.f( )=
D.f(x)的图象关于( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C:的两个顶点分别为A,B,点P是C上异于A,B的一点,直线PA,PB的倾斜角分别为α,β.若,则C的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项都是正数,a1=1,an+12=an2+ (n∈N*
(1)求证: ≤an<2(n≥2)
(2)求证:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> (n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABCA1B1C1中,AA1⊥平面ABCABBCCA=2AA1=4,DA1B1的中点,E为棱BB1上的点,AB1⊥平面C1DE,且B1C1DE四点在同一球面上,则该球的表面积为(  )

A. B. 11π C. 12π D. 14π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动员P过定点 且与圆N: 相切,记动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B分别为椭圆E: 的左,右顶点,点P(0,﹣2),直线BP交E于点Q, 且△ABP是等腰直角三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.

查看答案和解析>>

同步练习册答案