精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)定义域为(0,+∞)且满足f(x1)+f(x2)=f(x1x2),且x>1时,f(x)<0,若不等式f($\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$)≤f($\sqrt{{x}_{1}{x}_{2}}$)+f(a)恒成立,则a∈∈(-∞,$\sqrt{2}$].

分析 结合函数单调性的定义先判断f(x)的单调性.然后利用参数分类法以及基本不等式进行求解即可.

解答 解::任取x1,x2∈(0,+∞),且x1<x2
则$\frac{{x}_{2}}{{x}_{1}}$>1,f($\frac{{x}_{2}}{{x}_{1}}$)<0,
f(x2)-f(x1)=f(x1•$\frac{{x}_{2}}{{x}_{1}}$)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$)+f(x1)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$)<0,
即f(x2)<f(x1
由此得到y=f(x)是R上的减函数.
则不等式f($\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$)≤f($\sqrt{{x}_{1}{x}_{2}}$)+f(a)等价为不等式f($\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$)≤f(a$\sqrt{{x}_{1}{x}_{2}}$),
即$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$≥a$\sqrt{{x}_{1}{x}_{2}}$,
即a≤$\frac{\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}}{\sqrt{{x}_{1}{x}_{2}}}$,
∵$\frac{\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}}{\sqrt{{x}_{1}{x}_{2}}}$$≥\frac{\sqrt{2{x}_{1}{x}_{2}}}{\sqrt{{x}_{1}{x}_{2}}}$=$\sqrt{2}$,当且仅当x1=x2时,取等号,
∴a≤$\sqrt{2}$,
即a∈(-∞,$\sqrt{2}$]
故答案为:(-∞,$\sqrt{2}$]

点评 本题主要考查不等式恒成立问题,根据抽象函数的关系判断函数为单调递减函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+mx+4,在区间[2,5]存在x0,使f(x0)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正数数列{an}的前n项和为Sn,且4an-2Sn=1.
(1)求a1,a2,a3,a4,归纳数列{an}的通项公式并证明你的结论;
(2)设bn=2log${\;}_{\frac{1}{2}}$an,n∈N*,数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和为Un,求证:0<Un≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+b.
(1)若对任意的实数x,都有f(x)≥2x-1+b,求a的取值范围;
(2)当x∈[-1,1]时,f(x)的最大值为-2,求a2+b2的取值范围.
(3)已知a∈(0,$\frac{1}{2}$),对于任意的x∈[-1,1],都有|f(x)|≤1.请用a表示b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.试求二次函数f(x)=x2+2ax+3在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2cos2x+2$\sqrt{3}$sinx+a在区间[0,$\frac{π}{2}$]上的最小值是-4,那么实数a=(  )
A.4B.-6C.-4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如果对任意实数x.y都有f(x+y)=f(x)•f(y)且f(1)=2.
(1)求f(2),f(3),f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A,B,C为△ABC的三个内角,求解是否存在这样的A,B,C(A≠B≠C)使得cosA+cosB=cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设二次函数f(x)=x2+ax+b,若方程f(f(x))=0有4个不同的实根,其中有两个根的和等于-1,则b的取值范围是-$\frac{3}{2}$≤b<-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案