【题目】已知椭圆:的焦点分别为,,椭圆的离心率为,且经过点,经过,作平行直线,,交椭圆于两点,和两点,.
(1)求的方程;
(2)求四边形面积的最大值.
【答案】(1)(2)四边形面积最大值为6
【解析】
(1)利用离心率求得关系,再将点坐标代入椭圆方程求得即可;
(2)斜率存在时,设出方程,与椭圆方程联立,利用根与系数关系表示出,又因为之间的距离就是到直线:的距离,可得关系式,表示出,求出S的范围;斜率不存在时,求出四边形的面积,综合可得面积最大值.
解:(1)由,得,又,
解得:,,
所以的方程为:.
(2)当直线的斜率存在时,
设斜率为,设,,又,
所以直线的方程为,
由,得,
∴,,
∴
.
又,之间的距离即为到直线:的距离:,
∴四边形面积为:,
设,
则四边形面积为:,
∵,
∴,
∴.
当直线的斜率不存在时,四边形面积为:,
所以四边形面积,
因此四边形面积最大值为6.
科目:高中数学 来源: 题型:
【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中E,F在边上,G,H在圆弧上.设,矩形的面积为S.
(1)求矩形的面积S关于变量的函数关系式;
(2)求为何值时,矩形的面积S最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知曲线的参数方程为(为参数)。曲线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.
(1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为的折线图:
请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程,并预测该路口7月份的不“礼让斑马线”违章驾驶员人数.
附注:参考数据:,.
参考公式:,,(其中)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为,其焦点为,为过焦点的抛物线的弦,过分别作抛物线的切线,,设,相交于点.
(1)求的值;
(2)如果圆的方程为,且点在圆内部,设直线与相交于,两点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com