A. | (-2,0)∪(0,2) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(2,+∞) |
分析 由函数f(x)在(0,+∞)上满足:任意x1<x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,故函数f(x)在(0,+∞)上单调递增;结合f(2)=0,函数f(x)为奇函数,可得函数的图象和性质,进而得到不等式$\frac{f(x)-f(-x)}{x}$<0的解集.
解答 解:∵函数f(x)在(0,+∞)上满足:任意x1<x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,
故函数f(x)在(0,+∞)上单调递增;
又由f(2)=0,函数f(x)为奇函数,
故函数f(x)在(-∞,0)上单调递增,且f(-2)=0,
故当x∈(-∞,-2)∪(0,2)时,f(x)<0,
当x∈(-2,0)∪(2,+∞)时,f(x)>0,
∵$\frac{f(x)-f(-x)}{x}$=$\frac{2f(x)}{x}$<0,
故x∈(-2,0)∪(0,2),
故选:D.
点评 本题考查的知识点是函数的单调性,函数的奇偶性,是函数图象和性质的综合应用,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com