精英家教网 > 高中数学 > 题目详情
4.下列命题中正确的序号是②③
①平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为$\sqrt{3}$.
②有一底面积半径为1,高为2的圆柱,点O为这个圆柱底面的圆心,在这个圆柱内随机抽取一点P,则点P到O点的距离大于1的概率为$\frac{2}{3}$.
③命题:“?x∈(0,+∞),不等式cosx>1-$\frac{1}{2}$x2恒成立”是真命题.
④在约束条件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{x+y≥1}\end{array}\right.$下,目标函数z=ax+by(a>0,b>0)的最大值为6,则$\frac{ab}{2a+b}$的最大值等于$\frac{2}{3}$.

分析 ①根据投影公式代入求出即可判断;②根据球和圆柱的体积公式求出即可;③构造函数,求出函数的导数,得到函数的单调性,从而得到结论;④画出平面区域,结合基本不等式的性质从而求出代数式的最大值.

解答 解:①则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为:|$\overrightarrow{a}$|cos60°=2×$\frac{1}{2}$=1,故①错误;
②∵到点O的距离等于1的点构成一个球面,如图,

则点P到点O的距离大于1的概率为:
P=$\frac{半球外的体积}{圆柱的体积}$=$\frac{圆柱的体积-半球的体积}{圆柱的体积}$=$\frac{2π-\frac{2π}{3}}{2π}$=$\frac{2}{3}$,
故②正确;
③构造函数h(x)=cosx-1+$\frac{1}{2}$x2,h′(x)=-sinx+x,h″(x)=-cosx+1≥0,∴h′(x)在(0,+∞)上单调增
∴h′(x)>h′(0)=0,∴函数h(x)在(0,+∞)上单调增,∴h(x)>0,
∴cosx>1-$\frac{1}{2}$x2,即不等式恒成立,
故③正确;
④:约束条件对应的平面区域如图

3个顶点是(1,0),(1,2),(-1,2),
由图易得目标函数在(1,2)取最大值6,
此时a+2b=6,
∵a>0,b>0,∴由不等式知识可得:a+2b=6≥2$\sqrt{a•2b}$,
∴ab≤$\frac{9}{2}$,当且仅当:a=2b即:a=3,b=$\frac{3}{2}$时“=”成立,
要求$\frac{ab}{2a+b}$的最大值转化为求$\frac{2a+b}{ab}$的最小值即可,
而$\frac{2a+b}{ab}$=$\frac{2}{b}$+$\frac{1}{a}$≥2$\sqrt{\frac{2}{b}•\frac{1}{a}}$=2$\sqrt{\frac{2}{ab}}$≥2$\sqrt{\frac{2}{\frac{9}{2}}}$=$\frac{4}{3}$,
∴$\frac{ab}{2a+b}$的最大值等于$\frac{4}{3}$,
故④错误,
故答案为:②③.

点评 本题考查了向量的运算,考查概率问题,考查函数恒成立问题,基本不等式性质的应用以及线性规划问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设x>0,y>0,A=$\frac{x+y}{1+x+y}$,B=$\frac{x}{1+x}+\frac{y}{1+y}$,则A与B的大小关系为(  )
A.A>BB.A≥BC.A<BD.A≤B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.把正奇数数列{2n-1}中的数按上小下大、左小右大的原则排成如图的三角形数表:
设amn(m,n∈N*)是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.
(1)求a73
(2)若amn=2011,求m,n的值;
(3)已知函数$f(x)=\frac{{\root{3}{x}}}{2^n}(x>0)$,若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在电脑游戏中,“主角”的生命机会往往被预先设定.如某枪战游戏,“主角”被设置生命6次,每次生命承受射击8次(即被击中8次就失去一次生命机会),假设射击为单发射击,如图是为“主角”耗用生命机会的过程设计的一个程序框图,请问判断框内应该填(  )
A.i<6B.i<8C.i>48D.i<48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各选项中,与sin211°最接近的数是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知两点M(1,0),N(-3,0)到直线l的距离分别为1和3,则满足条件的直线l的条数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若AB是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>c)垂直于x轴的动弦,F为焦点,当AB经过焦点F时|AB|=3,当AB最长时,∠AFB=120°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知N(4,0),连接AN与椭圆相交于点M,证明直线BM恒过x轴定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆x2+y2=8内有一点M(-1,2),AB为经过点M且倾斜角为α的弦.
(1)当弦AB被点M平分时,求直线AB的方程;
(2)当α=$\frac{3π}{4}$时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cosθ,sinθ)与向量$\overrightarrow{b}$=(1,1)的夹角为$\frac{π}{6}$,则sin2θ=(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案