精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\sqrt{\frac{x+1}{x-2}}$的定义域是集合A,函数$g(x)=\frac{1}{{\sqrt{{x^2}-(2a+1)x+{a^2}+a}}}$的定义域是集合B.
(1)求A,B
(2)若A∪B=B,求实数a的取值范围.

分析 (1)被开方数≥0,求A,分母中被开方数>0求出B.
(2)由题意A是B的子集,可解出实数a的取值范围.

解答 解:(1)由题意$\frac{x+1}{x-2}$≥0,所以A={x|x>2或x≤-1},
x2-(2a+1)x+a2+a>0,可得B={x|x>a+1或x<a};
(2)由A∪B=B得A⊆B,
因此$\left\{\begin{array}{l}{a>-1}\\{a+1≤2}\end{array}\right.$,
解得:-1<a≤1,
∴实数a的取值范围是-1<a≤1

点评 本题考查函数的定义域及其求法,并集及运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ex-3-x-ax2
(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)当x≥0时,f(x)≥-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在数列{an}中,a1=1,an+1=2an+1,则a10=(  )
A.1023B.1024C.1025D.511

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,则f(f(-2))=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.x+x-1=4,则${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式$\frac{t}{{{t^2}+2}}≤μ≤\frac{t+2}{t^2}$,对任意的t∈(0,1]上恒成立,则μ的取值范围是(  )
A.$[{\frac{1}{13},2}]$B.[$\frac{2}{13}$,1]C.$[{\frac{1}{6},6}]$D.$[{\frac{1}{3},3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn,Tn分别是等差数列{an},{bn}的前n项和,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+1}{4n-2}$(n∈N*),则$\frac{{a}_{10}}{{b}_{3}+{b}_{18}}$+$\frac{{a}_{11}}{{b}_{6}+{b}_{15}}$=$\frac{41}{78}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD
(2)若PA=1,求点A到平面PFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,且2-log2a=3-log3b=log6$\frac{1}{a+b}$,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{108}$.

查看答案和解析>>

同步练习册答案