精英家教网 > 高中数学 > 题目详情

【题目】某市在开展创建全国文明城市活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求出a的值;

2)若已从年龄较小的第12组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到人,求随机变量的分布列及数学期望.

【答案】(1)(2)详见解析

【解析】

1)由频率分布直方图的性质,能求出的值.

2)根据分层抽样的规则计算出各组人数,则随机变量的所有可能取值为123,分别计算出概率,列出分布列即可求出期望.

解:(1)由,解得.

2)第12组的人数分别为20人,30人,从第12组中用分层抽样的方法抽取5人,则第12组抽取的人数依次为2人,3.

随机变量的所有可能取值为123.其中

所以随机变量的分布列为:

l

2

3

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中

1)若.求证:.

2)若不等式恒成立,试求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点分别为AB,离心率为,长轴长为4,动点SC上位于x轴上方,直线与直线,分别交于MN两点.

1)求椭圆C的方程

2)求|MN|的最小值

3)当最小时,在椭圆C上是否存在这样的点T,使△TSB面积为?若存在,请确定点T的个数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且a3+2S677a10a510.

1)求数列{an}的通项公式;

2)数列{bn}满足:b11bnbn1ann+1n≥2),求数列{}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分,每项评分最低分0分,最高分100分,每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:

请根据图中所提供的信息,完成下列问题:

I)若从交通得分前6名的景点中任取2个,求其安全得分都大于90分的概率;

II)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为,求随机变量的分布列和数学期望;

III)记该市26个景点的交通平均得分为安全平均得分为,写出的大小关系?(只写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.正四面体ABCD的顶点ABC分别在两两垂直的三条射线OXOYOZ上,则在下列命题中,错误的为(   )

A.OABC是正三棱锥B.二面角DOBA的平面角为

C.直线AD与直线OB所成角为D.直线OD⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的右焦点、右顶点分别为FA,过原点的直线与椭圆C交于点PQ(点P在第一象限内),连结PAQF的面积是面积的3倍.

1)求椭圆C的标准方程;

2)已知M为线段PA的中点,连结QAQM

①求证:QFM三点共线;

②记直线QPQMQA的斜率分别为,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足为常数,,且),,若存在正整数,使得成立;数列是首项为2,公差为的等差数列,为其前项和,则以下结论正确的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案