精英家教网 > 高中数学 > 题目详情

【题目】已知为抛物线的焦点,的准线与轴的交点,点在抛物线上,设,有以下个结论:

的最大值是;②;③存在点,满足.

其中正确结论的序号是______.

【答案】①②③

【解析】

由直线与抛物线相切可求得的最大值,可判断命题①的正误;利用弦化切的思想和正弦定理边角互化思想可判断命题②的正误;由结合化简得出,判断该方程在时是否有根,由此可判断命题③的正误,综合可得出结论.

如下图所示:

易知点,可设直线的方程为

由图形可知,当直线与抛物线相切时,取最大值,

联立,消去,得

此时,直线的斜率为,所以,的最大值为,命题①正确;

过点作抛物线准线的垂线,垂足为点,则

由抛物线的定义可知,则

中,由正弦定理得,所以,命题②正确;

若存在点,使得,则,可得,则.

由②知

,则

构造函数,则

由零点存在定理可知,函数在区间上有零点,

所以,关于的方程时有实数解,命题③正确.

因此,正确结论的序号为①②③.

故答案为:①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与椭圆相交于点M01),N0-1),且椭圆的离心率为.

1)求的值和椭圆C的方程;

2)过点M的直线交圆O和椭圆C分别于AB两点.

①若,求直线的方程;

②设直线NA的斜率为,直线NB的斜率为,问:是否为定值? 如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.

1)求抛物线的方程;

2)已知动直线过点,交抛物线两点,坐标原点的中点,求证

3)在(2)的条件下,是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的一个焦点与抛物线的焦点相同.直线过点,且与椭圆相交于两点.

1)求椭圆的方程;

2)若直线的一个方向向量为,求的面积(其中为坐标原点);

3)试问:在轴上是否存在点,使得为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为七珠算盘.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定个位档十位档百位档千位档,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的短轴长为2,离心率为,左顶点为A,过点A的直线lC交于另一个点M,且与直线xt交于点N

1)求椭圆C的方程;

2)是否存在实数t,使得为定值?若存在,求实数t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在同一个球的上,,,.若四面体体积的最大值为,则这个球的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆M经过圆Nx轴的两个交点和与y轴正半轴的交点.

1)求椭圆M的方程;

2)若点P为椭圆M上的动点,点Q为圆N上的动点,求线段PQ长的最大值;

3)若不平行于坐标轴的直线交椭圆MAB两点,交圆NCD两点,且满足求证:线段AB的中点E在定直线上.

查看答案和解析>>

同步练习册答案