精英家教网 > 高中数学 > 题目详情
1.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?

分析 由已知条件利用面面垂直的判定定理直接判断.

解答 解:∵AB⊥平面BCD,AB?平面ABC,AB?平面ABD,
∴平面ABC⊥平面BCD,
平面ABD⊥平面BCD,
∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD,
又BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,
∵CD?平面BCD,∴平面ACD⊥平面ABC.
综上所述,互相垂直的平面有:平面ABC⊥平面BCD,平面ABD⊥平面BCD,平面ACD⊥平面ABC.

点评 本题考查面面垂直的判断,是基础题,解题时要认真审题,注意面面垂直判定定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a,b∈R,求证:a2-ab+b2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆心为C的圆经过点A(1,1),B(2,-2),且圆心C在直线l:x-y+1=0上
(1)求圆C的标准方程
(2)求过点(1,1)且与圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A={x|x2-2x-3>0},B={x|2m-1≤x≤m+3},若B⊆A,则实数m的取值范围{m|m<-4或m>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1、F2,离心率为$\frac{{\sqrt{3}}}{3}$,过点F2的直线交椭圆C于A、B两点,且△AF1B的周长为$4\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)若过定点M(0,-2)的动直线l与椭圆C相交P,Q两点,求△OPQ的面积的最大值(O为坐标原点),并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若0<a<1,实数x,y满足|x|=loga$\frac{1}{y}$,则该函数的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x≥1}\\{x+y-7≤0}\end{array}\right.$,则$\frac{y+x}{x}$的取值范围是(  )
A.[$\frac{14}{5}$,7]B.(-∞,$\frac{14}{5}$]∪[7,+∞)C.(-∞,4]∪[7,+∞)D.(4,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2-x+m=0},B={x|x2+px+q=0},且A∩B={1},A∪B=A.
(1)求实数m的值;
(2)求实数p,q的值.

查看答案和解析>>

同步练习册答案