精英家教网 > 高中数学 > 题目详情

【题目】椭圆轴,轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为.

(1)求椭圆的方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴上截距的取值范围.

【答案】(1)(2)

【解析】

试题分析:(1)由题意直线方程为,即,根据题设条件列出方程组,求解的值,即可求得椭圆的方程;(2)当直线斜率不存在时,线段的垂直平分线的纵截距为0;当直线斜率存在时,设直线的方程为,代入椭圆的方程,由和韦达定理,得,利用垂直平分线的方程,即可求得线段的垂直平分线在轴上截距的取值范围.

试题解析:(1)由题意,直线方程为,即

,得故椭圆的方程为

(2)当直线斜率不存在时,线段的垂直平分线的纵截距为0;

当直线斜率存在时,设直线的方程为

代入………………(*).

,得

的中点

根据(*)及韦达定理,有

于是线段的垂直平分线的方程为

,得中垂线的纵截距,由,得

综上,纵截距的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题:直线与圆有两个交点;命题:.

(1)若为真命题,求实数的取值范围;

(2)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球互相独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:

所取球的情况

三个球均为红色

三个球均为不同色

恰有两球为红色

其他情况

所获得的积分

180

90

60

0

(1)求一次摸奖中,所取的三个球中恰有两个是红球的概率;

(2)设一次摸奖中,他们所获得的积分为的分布列及均值(数学期望)

(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,时,其中是自然对数的底数=2.71828.

的值;

时,方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

1分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;

2若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?

3甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)求证:数列是等比数列,并求的通项公式;

(2)记数列的前项和,求使得成立的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,已知,点在底面的投影是线段的中点

(1)证明:在侧棱上存在一点,使得平面,并求出的长;

(2)求:平面与平面夹角的余弦值.

查看答案和解析>>

同步练习册答案