精英家教网 > 高中数学 > 题目详情
如图,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
PB=
6

(1)证明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求点A到平面PBC的距离.
分析:(1)先由线面垂直:PA⊥平面ABC,证出线线垂直:PA⊥BC,再由线线垂直:AC⊥BC且PA∩AC=A,证明线面垂直:BC⊥平面PAC,最后由线面垂直:BC?平面PBC,证出面面垂直:面PAC⊥平面PBC
(2)先证明∠PCA就是二面角P-BC-A的平面角,由线面垂直证明线线垂直:BC⊥AC,BC⊥PC,所以∠PCA就是二面角P-BC-A的平面角,再在Rt△PAC中计算∠PCA即可
(3)一作:取PC的中点E,连接AE,二证:∵AE⊥平面PBC∴线段AE的长就是点A到平面PBC的距离,三计算:在Rt△PAC中,AE=
|PC|
2
=1
解答:解:(1)证明:依题意,∵PA⊥平面ABC,∴PA⊥BC,∵AC⊥BC且PA∩AC=A,∴BC⊥平面PAC,∵BC?平面PBC
∴面PAC⊥平面PBC
(2)∵BC⊥平面PAC∴BC⊥AC,BC⊥PC∴∠PCA就是二面角P-BC-A的平面角
在Rt△PAC中,AC=
4-2
=
2
 PC=
6-2
=2
∴cos∠PCA=
2
2

∵∠PCA∈[0,π]∴∠PCA=
π
4

∴二面角P-BC-A的大小为
π
4

(3)依题意,PA=
2

取PC的中点E,连接AE,
∵PA=AC,∴AE⊥PC
∵面PAC⊥平面PBC
∴AE⊥平面PBC
∴线段AE的长就是点A到平面PBC的距离
在Rt△PAC中,AE=
|PC|
2
=1
∴A到平面PBC的距离为1
点评:本题考察了空间面面垂直的证明方法,二面角的求法及空间点到面的距离的求法,解题时要有较强的空间想象力,较强的运算能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面AC,四边形ABCD是矩形,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B为45°,AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点F是PB的中点,点E在边BC上移动.
(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并求出EF到平面PAC的距离;
(2)命题:“不论点E在边BC上何处,都有PE⊥AF”,是否成立,并说明理由.

查看答案和解析>>

同步练习册答案