精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,平面.

(1)证明:平面

(2)过点作一平行于平面的截面,画出该截面,说明理由,并求夹在该截面与平面之间的几何体的体积.

【答案】(1)证明见解析;(2).

【解析】分析:(1)由余弦定理结合勾股定理可证明,利用线面垂直的性质可证明由线面垂直的判定定理可得平面;(2)的中点的中点,连接截面即为所求由(1)可知,平面平面由“分割法”利用棱锥的体积公式可得结果.

详解(1)证明:在中,.

所以,所以为直角三角形,.

又因为平面,所以.

,所以平面.

(2)取的中点的中点,连接,平面即为所求.

理由如下:

因为,所以四边形为平行四边形,所以,从而平面

同理可证平面.

因为,所以平面平面.

由(1)可知,平面平面.

因为

所以,所求几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】生物学家预言,21世纪将是细菌发电造福人类的时代。说起细菌发电,可以追溯到1910年,英国植物学家利用铂作为电极放进大肠杆菌的培养液里,成功地制造出世界上第一个细菌电池。然而各种细菌都需在最适生长温度的范围内生长。当外界温度明显高于最适生长温度,细菌被杀死;如果在低于细菌的最低生长温度时,细菌代谢活动受抑制。为了研究某种细菌繁殖的个数是否与在一定范围内的温度有关,现收集了该种细菌的6组观测数据如下表:

经计算得:,线性回归模型的残差平方和.其中分别为观测数据中的温度与繁殖数,.

参考数据:

(Ⅰ)求关于的线性回归方程(精确到0.1);

(Ⅱ)若用非线性回归模型求得关于回归方程为,且非线性回归模型的残差平方和

(ⅰ)用相关指数说明哪种模型的拟合效果更好;

(ⅱ)用拟合效果好的模型预测温度为34℃时该种细菌的繁殖数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘法估计为

相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过一段时间的产销,得到了的一组统计数据如下表:

(1)请判断中,哪个模型更适合刻画之间的关系?可从函数增长趋势方面给出简单的理由;

(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?

.

线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图如图所示,规定80分及以上者晋级成功,否则晋级失败.

晋级成功

晋级失败

合计

16

50

合计

求图中a的值;

根据已知条件完成下面列联表,并判断能否有的把握认为晋级成功与性别有关?

将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的数学期望与方差

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面ABC,点EF分别为BC的中点.

1)求证:平面

2)求证:直线平面

3)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是,对任意,当时,.关于函数给出下列四个命题:①函数是周期函数;②函数是奇函数;③函数的全部零点为;④当时,函数的图象与函数的图象有且只有三个公共点.其中真命题的序号为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的值域;

(2)试问:函数的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;

(3)若方程的三个实数根满足:,且,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且满足

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,为直线上一点,且满足,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 若方程恰有三个实数根,则实数的取值范围是_______.

查看答案和解析>>

同步练习册答案