【题目】已知椭圆:的短轴长为2,且椭圆过点.
(1)求椭圆的方程;
(2)设直线过定点,且斜率为,若椭圆上存在,两点关于直线对称,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数,(e为自然对数的底数,e≈2.718).对于任意的(0,e),在区间(0,e)上总存在两个不同的,,使得==,则整数a的取值集合是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线:,曲线: .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).
(1)求,的直角坐标方程;
(2)与,交于不同四点,这四点在上的排列顺次为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检部门从某超市销售的甲、乙两种食用油中分别随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:
(I)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);
(Ⅱ)佑计在甲、乙两种食用油中各随机抽取1桶,恰有一个桶的质量指标大于20,且另—个桶的质量指标不大于20的概率;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数,近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55, 38.45)的桶数,求的数学期望.
注:①同一组数据用该区间的中点值作代表,计算得:
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,
(1)求证:数列为等比数列,并求出数列的通项公式;
(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①命题“”的否定是“”;
②若是真命题,则可能是真命题;
③“且”是“”的充要条件;
④当时,幂函数在区间上单调递减.
其中正确的是
A. ①③ B. ②④ C. ①④ D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com