精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex﹣ax,a>0.
(1)记f(x)的极小值为g(a),求g(a)的最大值;
(2)若对任意实数x恒有f(x)≥0,求f(a)的取值范围.

【答案】
(1)解:函数f(x)的定义域是(﹣∞,+∞),f'(x)=ex﹣a,

令f'(x)>0,得x>lna,所以f(x)的单调递增区间是(lna,+∞);

令f'(x)<0,得x<lna,所以f(x)的单调递减区间是(﹣∞,lna),

函数f(x)在x=lna处取极小值,

g'(a)=1﹣(1+lna)=﹣lna,

当0<a<1时,g'(a)>0,g(a)在(0,1)上单调递增;

当a>1时,g'(a)<0,g(a)在(1,+∞)上单调递减,

所以a=1是函数g(a)在(0,+∞)上唯一的极大值点,也是最大值点,

所以g(a)max=g(1)=1


(2)解:当x≤0时,a>0,ex﹣ax≥0恒成立,

当x>0时,f(x)≥0,即ex﹣ax≥0,即

当0<x<1时,h'(x)<0,当x>1时,h'(x)>0,

故h(x)的最小值为h(1)=e,

所以a≤e,故实数a的取值范围是(0,e]

f(a)=ea﹣e2,a∈(0,e],f'(a)=ea﹣2a,由上面可知ea﹣2a≥0恒成立,

故f(a)在(0,e]上单调递增,所以f(0)=1<f(a)≤f(e)=ee﹣e2

即f(a)的取值范围是(1,ee﹣e2]


【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值g(a)的表达式,根据函数的单调性求出g(a)的最大值即可;(2)通过讨论x的范围,问题转化为 ,根据函数的单调性求出f(a)的范围即可.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明函数为奇函数;

(2)判断函数的单调性(无需证明),并求函数的值域;

(3)是否存在实数,使得的最大值为?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图并求的值;

(2)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为__________

【答案】

【解析】如图,不妨设处,
则有
该直角三角形斜边

故答案为.

型】填空
束】
16

【题目】已知函数f(x)=,g(x)=,若函数y=f(g(x))+a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则2g(x1)+g(x2)+g(x3)的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;

(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(]n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。

(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函数关系式为: 乙方案的函数关系式为:(Ⅱ)①见解析,②见解析.

【解析】

由题意可得甲方案中派送员日薪(单位:元)与送单数的函数关系式为: 乙方案中派送员日薪(单位:元)与送单数的函数关系式为:.

①由题意求得X的分布列,据此计算可得.

②答案一:由以上的计算可知,远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,所以小明应选择乙方案.

Ⅰ)甲方案中派送员日薪(单位:元)与送单数的函数关系式为:

乙方案中派送员日薪(单位:元)与送单数的函数关系式为:

①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:

单数

52

54

56

58

60

频率

0.2

0.3

0.2

0.2

0.1

所以的分布列为:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列为:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.

【点睛】

本题主要考查频率分布直方图,数学期望与方差的含义与实际应用等知识,意在考查学生的转化能力和计算求解能力.

型】解答
束】
20

【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)证明:
(2)证明:当a≥1时,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:每题只选一个选项,答对得5分,不答或答错得零分.某考生已确定有7道题的答案是正确的,其余题中:有一道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:

Ⅰ)得50分的概率;

Ⅱ)所得分数的数学期望(用小数表示,精确到0.01k^s*5#u)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当 时,求f(x)的最值;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

同步练习册答案