精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
kx-1(0<x<k)
3x4k-x2k(k≤x<1)
满足f(k2)=-
7
8

(1)求常数k的值;
(2)若f(x)-2a<0恒成立,求a的取值范围.
分析:(1)先要判定k2的范围,然后结合条件f(k2)=-
7
8
,即可获得参数k的关系式,从而问题即可获得解答;
(2)首先可结合(1)对问题进行化简,对化简后的分段函数求最值,由恒成立问题的特点即可转化为关于参数a的不等关系,进而问题即可获得解答.
解答:解:(1)∵0<k<1,
∴k2<k,
f(k2)=k3-1=-
7
8
k3=
1
8
,k=
1
2


(2)由(1)得知:f(x)=
1
2
x-1(0<x<
1
2
)
3x2-x(
1
2
≤x<1)

x∈(0,
1
2
)
时,f(x)递增,得f(x)<-
3
4

x∈[
1
2
,1)
时,f(x)递增,得f(x)<f(1)=2,
又由2a>fmax(x),
得2a≥2,
∴a的取值范围为:a≥1.
点评:本题考查的是分段函数和恒成立的综合类问题.在解答的过程当中充分体现了解方程的思想、分类讨论的思想以及恒成立的问题解答规律.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=log3(x2-2x)的单调减区间为(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,则p是q的必要不充分条件;
(3)命题“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函数f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则y=f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
],k∈z

(5)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
其中所有正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
4x+2

(1)试求f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)
+f(
2
n
)
+…+f(
n-1
n
)
+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2n+1•an,Sn是数列{bn}前n项的和,是否存在正实数k,使不等式knSn>4bn对于一切的n∈N*恒成立?若存在指出k的取值范围,并证明;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄浦区一模)已知函数f(x)=k+
x
,存在区间[a,b]⊆[0,+∞),使f(x)在[a,b]上的值域仍是[a,b],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,g(x)=(3-k2)(logax+logxa),(其中a>1),设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当x∈(1,+∞)时,若存在x0∈(1,+∞),使f(x0)>g(x0)成立,试求k的范围.

查看答案和解析>>

科目:高中数学 来源:吉林省模拟题 题型:单选题

已知函数f(x)=+k定义域为D,且方程f(x)=x在D上有两个不等实根,则k的取值范围是
[     ]
A.-1<k≤
B.≤k<1
C.k>-1
D.k<1

查看答案和解析>>

同步练习册答案