精英家教网 > 高中数学 > 题目详情
先后两次抛掷一枚质地均匀的骰子,求“出现的点数和是7”的概率.
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:将一枚质地均匀的骰子连续抛掷两次,向上的点数和的情况有62=36种,其中点数为7的情况有6种,由此能求出向上的点数和为7的概率.
解答: 解:将一枚质地均匀的骰子连续抛掷两次,
向上的点数和的情况有62=36种,
其中点数为7的情况有:1+6,6+1,2+5,5+2,3+4,4+3,共6种,
∴向上的点数和为7的概率P=
6
36
=
1
6
点评:本题考查概率的求法,是基础题,解题时要注意古典概型概率计算公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={(x,y)|y=
x2-1
x+1
},B={(x,y)|y=ax},且A∩B=∅,则a的值为(  )
A、a=1或a=0
B、a=2或a=0
C、a=1或a=2
D、a=1或a=3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数:①f(x)=x2-2x;②f(x)=sinx,0≤x≤2π;③f(x)=2x+x;④f(x)=log2(2x-1),x>
1
2
.其中,能使f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]恒成立的函数的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=
2x
4x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在何区间上单调递减,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(4,5-
5
sinα)与
b
=(
5
5
,sinα)共线.求:
cos(3π-α)
sin(
π
2
+α)[sin(
7
2
π+α)-1]
+
sin(
5
2
π-α)
cos(3π+α)sin(
5
2
π+α)-sin(
7
2
π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有4个大小相同、标号分别为1,2,3,4的小球,依次从袋中取出所有的球,则“标号顺序不符合从小到大或从大到小排列”的概率为(  )
A、
1
12
B、
1
6
C、
5
6
D、
11
12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

[(sin2216°-1)÷2]÷sin18°.

查看答案和解析>>

同步练习册答案