精英家教网 > 高中数学 > 题目详情
已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围.
分析:圆的方程化为标准方程,求出圆心和半径,过定点A(1,2)作圆的切线有两条,点A必在圆外,推出不等式,然后解答不等式即可.
解答:解:将圆的方程配方得(x+
a
2
2+(y+1)2=
4-3a2
4
,圆心C的坐标为(-
a
2
,-1),半径r=
4-3a2
4

条件是4-3a2>0,过点A(1,2)所作圆的切线有两条,则点A必在圆外,即
(1+
a
2
)
2
+(2+1)2
4-3a2
4

化简得a2+a+9>0.
由4-3a2>0,a2+a+9>0,
解之得-
2
3
3
<a<
2
3
3

a∈R.
∴-
2
3
3
<a<
2
3
3

故a的取值范围是(-
2
3
3
2
3
3
).
点评:本题考查圆的切线方程,直线和圆的方程的应用,考查一元二次不等式的解法,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A、10
6
B、20
6
C、30
6
D、40
6

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知圆的方程为x2+y2-2x+6y+8=0,那么该圆的一条直径所在直线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的两条弦分别为AC和BD,且AC⊥BD.则四边形ABCD的面积最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程为x2+y2+2x-4y-4=0,求经过点(4,-1)的该圆的切线方程.

查看答案和解析>>

同步练习册答案