【题目】在 中, , , 分别为角 , , 所对的边, 为 的面积,且 .
(I)求角 的大小;
(II)若 , , 为 的中点,且 ,求 的值.
【答案】解:(I)由已知得 ,
∴ .
即 .
∴ .
又∵ , ,
(II)由 得:
,又∵ 为 的中点,∴ , ,
∴ ,即 .
又∵ ,
∴ .
又∵ ,∴ , ,
∴
【解析】(1)由题中已知的三角形面积公式,利用同角三角函数的基本关系式可求得tan A的值,再结合角A的范围即可求出A的值。(2)由D为BC的中点可得出DB=DC、AD的值,利用cos ∠ A D B = cos ∠ A D C结合余弦定理整理可得 b2 + c2= 20,由(1)的结论结合余弦定理 可求出 b c的值,联立两式可分别别求出b、c的值,再利用正弦定理即可解得sinc的结果。
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点 ,并且经过点 .
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 与g(x)=cos(2x+φ) ,它们的图象有一个横坐标为 的交点.
(Ⅰ)求φ的值;
(Ⅱ)将f(x)图象上所有点的横坐标变为原来的 倍,得到h(x)的图象,若h(x)的最小正周期为π,求ω的值和h(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:( )
①向量 , 不共线,则向量 与向量 一定不共线
②对任意向量 , ,则 恒成立
③在同一平面内,对两两均不共线的向量 , , ,若给定单位向量 和正数 ,总存在单位向量 和实数 ,使得
则正确的序号为( )
A.①②③
B.①③
C.②③
D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
参考公式:
(1)已知产量 和能耗 呈线性关系,请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程 ;
(2)已知该厂技改前100吨甲产品的生产耗能为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(x﹣ )的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象( )
A.关于点(﹣ ,0)对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣ sinx cosx+1
(1)求函数f(x)的最小正周期和单调递增区间; (Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为正整数集的函数f(x)= ,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,则n=;若f4(x)=1,则x所有的值构成的集合为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),则a1+a2+a3+…+a40等于( )
A.222
B.223
C.224
D.225
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com