【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,将这100人的年龄数据分成5组:,整理得到如图所示的频率分布直方图.
(1)由频率分布直方图,计算出各年龄段的人数,并估计这100人年龄的众数、中位数和平均数;(该小题不用写解题过程,请在答题卷上直接写出答案
(2)支持“延迟退休”的人数如下表所示,根据以上统计数据填写下面的2×2列联表,据此表,能否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政”的不支持态度存在差异?
附:,其中.
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)众数:50,中位数:45,平均数:42;(2)有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异.
【解析】
(1)根据频率分布直方图,可求得各组的人数.由众数、中位数和平均数的求法可得解.
(2)由所给支持“延迟退休”的人数表格,填写列联表.由的计算公式代入求值,即可与临界值比较做出判断.
(1)
年龄 | |||||
人数 | 20 | 10 | 20 | 30 | 20 |
众数:50,中位数:45,平均数:42,
(2)由题意填写列联表如下,
45岁以下 | 45岁以上 | 总计 | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
总计 | 50 | 50 | 100 |
计算观测值尽,
所以有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异.
科目:高中数学 来源: 题型:
【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.
某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).
(Ⅰ)求物理原始成绩在区间(47,86)的人数;
(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.
(附:若随机变量,则,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.
(1)若AB=,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的两焦点为,为动点,若.
(1)求动点的轨迹方程;
(2)若,设直线过点,且与轨迹交于两点,直线与交于点.试问:当直线在变化时,点是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①残差平方和越小的模型,拟合的效果越好;
②用相关指数来刻画回归效果,越小,说明模型拟合的效果越好;
③散点图中所有点都在回归直线附近;
④随机误差满足,其方差的大小可用来衡量预报精确度.
其中正确命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,经过点B(0,1).设椭圆G的右顶点为A,过原点O的直线l与椭圆G交于P,Q两点(点Q在第一象限),且与线段AB交于点M.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△BOP的面积是△BMQ的面积的3倍?若存在,求直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?
(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com