精英家教网 > 高中数学 > 题目详情

【题目】在正方形中,中点,将分别沿若翻折,使得两点重合,则所形成的立体图形的外接球的表面积是( )

A.B.C.D.

【答案】B

【解析】

根据题意,作出翻折后的几何体,取中点,记外接圆圆心为,过点平面,由题中条件得到,记几何体外接球球心为,连接,得到,再由题中数据,即可求出外接球半径,从而可得出球的表面积.

由题意,作出翻折后的几何体如图所示:

中点,记外接圆圆心为

因为在正方形中,,所以翻折后,为等边三角形,

外接圆圆心即是重心,

所以三点共线,且

过点平面,记所求几何体外接球球心为,外接球半径为

则球心在直线上,连接,则

,所以翻折后,

所以平面,因此

,所以是等腰三角形,

易得

所以

故所求外接球表面积为.

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,长半轴长与短半轴长的比值为.

1)求椭圆的方程;

2)设经过点的直线与椭圆相交于不同的两点.若点在以线段为直径的圆上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调递增区间.

(2)在ΔABC中,角ABC所对的边分别为abc,若f(A)=1,c=10,cosB=,求ΔABC的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义域为R的周期函数最小正周期为2

f(1x)f(1x)当-1≤x≤0f(x)=-x.

(1)判断f(x)的奇偶性;

(2)试求出函数f(x)在区间[12]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某芯片所获订单(亿件)与生产精度(纳米)线性相关,该芯片的合格率与生产精度(纳米)也线性相关,并由下表中的5组数据得到,满足线性回归方程为:

精度(纳米)

16

14

10

7

3

订单(亿件)

7

9

12

14.5

17.5

合格率

0.99

0.98

0.95

0.93

1)求变量的线性回归方程,并预测生产精度为1纳米时该芯片的订单(亿件);

2)若某工厂生产该芯片的精度为3纳米时,每件产品的合格率为,且各件产品是否合格相互独立.该芯片生产后成盒包装,每盒100件,每一盒产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品.现对一盒产品检验了10件,结果恰有一件不合格,已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付200元的赔偿费用.若不对该盒余下的产品检验,这一盒产品的检验费用与赔偿费用的和记为,以为决策依据,判断是否该对这盒余下的所有产品作检验?

(参考公式:

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.

(1)当点P距O处2百米时,求OQ的长;

(2)当公路PQ的长最短时,求OQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,离心率,椭圆的短轴长为2.

1)求椭圆的标准方程;

2)已知直线过右焦点,且它们的斜率乘积为,设分别与椭圆交于点ABCD.

①求的值;

②设的中点M的中点为N,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在其定义域内有两个不同的极值点.

(1)求的取值范围;

(2)记两个极值点为,且,证明:.

查看答案和解析>>

同步练习册答案