精英家教网 > 高中数学 > 题目详情

【题目】某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?

【答案】解:设A,B两种中药材的种植面积各x亩,y亩;
则由题意可得, ;即:
一年的种植总利润z=0.55×4x+0.3×6y﹣(1.2x+0.9y)=x+0.9y万元;
作平面区域如下,

结合图象可知,

解得,x=30,y=20;此时一年的种植总利润最大;
那么A药材的面积是30亩;B药材的面积为20亩,
此时利润的最大值为:Z=30+0.9×20=48万元.
故答案为:A药材的面积是30亩;B药材的面积为20亩,利润的最大值为48万元.
【解析】由题意,设A,B两种中药材的种植面积各x亩,y亩;从而可得约束条件,一年的种植总利润z=0.55×4x+0.3×6y﹣(1.2x+0.9y)=x+0.9y;从而由线性规划求最优解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,a2=5,其前n项和为Sn满足Sn+Sn2=2Sn1+2n1(n≥3,n∈N*)
(1)试求数列{an}的通项公式
(2)令bn= ,Tn是数列{bn}的前n项和.证明:对任意给定的m∈(0, ),均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形AOB的顶点的坐标分别是A(4,0),B(0,3),O(0,0),则三角形AOB外接圆的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:
①在△ABC中,sinA>sinBa>b;
②常数数列既是等差数列又是等比数列;
③数列{an}的通项公式为 ,若{an}为递增数列,则k∈(﹣∞,2];
④△ABC的内角A,B,C满足sinA:sinB:sinC=3:5:7,则△ABC为锐角三角形.其中正确结论的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2,1), =(3,﹣4).
(1)求( + )(2 )的值;
(2)求向量 + 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品分为 三级,若生产中出现 级品的概率为0.03,出现 级品的概率为0.01,则对产品抽查一次抽得 级品的概率是( )
A.0.09
B.0.98
C.0.97
D.0.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,给出的是计算1+ + +…+ + 的值的一个程序框图,判断框内应填入的条件是(

A.i<101?
B.i>101?
C.i≤101?
D.i≥101?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.

查看答案和解析>>

同步练习册答案