精英家教网 > 高中数学 > 题目详情

【题目】设椭圆M:的左顶点为中心为若椭圆M过点,且

1)求椭圆M的方程;

2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;

3)过点作两条斜率分别为的直线交椭圆M两点,且,求证:直线恒过一个定点

【答案】(1)(2)(3)

【解析】(1)由,可知

点坐标为,可得, 

因为椭圆M点,故,可得

所以椭圆M的方程为.         

(2)AP的方程为,即

由于是椭圆M上的点,故可设

所以

,即时,取最大值.

的最大值为

法二:由图形可知,若取得最大值,则椭圆在点处的切线必平行于,且在直线的下方.

方程为,代入椭圆M方程可得

,可得,又,故

所以的最大值.    

(3)直线方程为,代入,可得

, 

同理可得,又,可得

所以

直线的方程为

,可得

故直线过定点.                 

(法二)若垂直于轴,则

此时与题设矛盾.

不垂直于轴,可设的方程为,将其代入

可得,可得

可得

可得,又不过点,即,故

所以的方程为,故直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点到点和直线l 的距离相等.

(Ⅰ)求动点的轨迹E的方程;

(Ⅱ)已知不与垂直的直线与曲线E有唯一公共点A,且与直线的交点为,以AP为直径作圆.判断点和圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=(﹣x2+ax)ex(x∈R,e为自然对数的底数).
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1C∩BC1=E.

求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的算法流程图中,输出S的值为(

A.32
B.42
C.52
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案