精英家教网 > 高中数学 > 题目详情

【题目】已知点F为抛物线C:x2=2py (p>0) 的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线的距离为,设点P到直线的距离为

(1)求抛物线C的方程;

(2) 求的最小值;

(3)求的最小值.

【答案】(1);(2);(3)

【解析】

1)根据抛物线的定义,将的长度转化为点纵坐标到准线的距离,从而得到,求出抛物线方程.

2)将抛物线上点的到直线的距离转化为直线与抛物线相切时,两平行线之间的距离.

3)利用抛物线定义,将转化为的长度,从而的值等于焦点到直线的距离,再求出其最小值.

(1)抛物线

所以抛物线的准线为

由抛物线的定义得,

解得,所以抛物线的方程为

(2)设直线的平行线:与抛物线相切,

整理得

故所求的最小值为

(3)由直线是抛物线的准线,

所以的最小值等于到直线的距离:

故所求的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为a,点EFG分别为棱ABAA1C1D1的中点.下列结论中,正确结论的序号是______

①过EFG三点作正方体的截面,所得截面为正六边形;

B1D1∥平面EFG

BD1⊥平面ACB1

④异面直线EFBD1所成角的正切值为

⑤四面体ACB1D1的体积等于a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,其中 为左、右焦点,且离心率,直线与椭圆交于两不同点 .当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求椭圆的方程;

(Ⅱ)若,当面积为时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa|-x(a>0).

(1)若a=3,解关于x的不等式f(x)<0;

(2)若对于任意的实数x,不等式f(x)-f(xa)<a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中,是边长为2等边三角形,的中点.

(1)求证:平面

(2)若与平面所成角为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关现从该市高三理科生中随机抽取50名学生进行调查得到如下2×2列联表:(单位:人)

(1)据此样本判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?

(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况现从该市的全体考生(人数众多)中随机抽取33人中报考“经济类”专业的人数为随机变量X求随机变量X的概率分布列及数学期望

附:

其中nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1[7580),第2[8085),第3[8590),第4[9095),第5[95100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为优秀,成绩小于85分的学生为良好,且只有成绩为优秀的学生才能获得面试资格.

1)求出第4组的频率,并补全频率分布直方图;

2)根据样本频率分布直方图估计样本的中位数与平均数;

3)如果用分层抽样的方法从优秀良好的学生中共选出5人,再从这5人中选2人,那么至少有一人是优秀的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD中,边长为2,E为AB中点,F是边BC上的动点.

(1)将△ADE沿DE翻折90°到△SDE,求二面角S-DC-E的正切值;

(2)若,将△ADE沿DE翻折到△SDE,△BEF沿EF翻折到△SEF,接DF,设直线DS与平面DEF所成角为θ,求的最大值.

查看答案和解析>>

同步练习册答案