精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系中,已知点M(0,-1),N(0,1),动点P满足PM=$\sqrt{2}$PN.
(1)求点P的轨迹C1的方程,并说明是什么曲线
(2)二次函数f(x)=x2+2x-3的图象与两坐标轴交于三点,过这三点的圆记为C2,求证C1、C2有两个公共点,并求出这两个公共点间距离.

分析 (1)利用直接法,可得点P的轨迹C1的方程,表示以(0,3)为圆心,2$\sqrt{2}$为半径的圆;
(2)求出圆C2的方程,可得C1、C2有两个公共点,求出公共弦的方程,即可求出这两个公共点间距离.

解答 解:(1)设P(x,y),则
∵点M(0,-1),N(0,1),动点P满足PM=$\sqrt{2}$PN,
∴$\sqrt{(0-x)^{2}+(-1-y)^{2}}$=$\sqrt{2}$•$\sqrt{(0-x)^{2}+(1-y)^{2}}$,
∴x2+y2-6y+1=0,即x2+(y-3)2=8,
表示以(0,3)为圆心,2$\sqrt{2}$为半径的圆;
(2)二次函数f(x)=x2+2x-3的图象与两坐标轴交于三点(0,-3),(1,0),(-3,0),
设圆C2的方程为x2+y2+Dx+Ey+F=0,
代入点的坐标,可得$\left\{\begin{array}{l}{9-3E+F=0}\\{1+D+F=0}\\{9-3D+F=0}\end{array}\right.$,∴D=2,E=2,F=-3,
∴圆C2的方程为x2+y2+2x+2y-3=0,即(x+1)2+(y+1)2=5,
∴|C1C2|=$\sqrt{(0+1)^{2}+(3+1)^{2}}$=$\sqrt{17}$,
∵5-2$\sqrt{2}$<|C1C2|<5-2$\sqrt{2}$,
∴C1、C2有两个公共点,
两个圆的方程相减,可得公共弦的方程:x+4y-2=0,
(0,3)到直线的距离为$\frac{10}{\sqrt{1+16}}$=$\frac{10}{\sqrt{17}}$,
∴两个公共点间距离2$\sqrt{8-\frac{100}{17}}$=$\frac{12}{17}\sqrt{17}$.

点评 本题考查轨迹方程,考查圆与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知点B(3,-2),$\overrightarrow{AB}$=(-2,4),求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={x∈R|sinx=x}的子集个数为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(1ncosx)′=-tanx,则由曲线y=sin2x与y=tanx(-$\frac{π}{2}$<x<$\frac{π}{2}$)围成的封闭图形的面积为1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC为钝角三角形,命题“p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0”,下列结论正确的是(  )
A.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:假命题
B.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:真命题
C.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:真命题
D.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列圆的方程:
(1)圆心为(3,0),且与圆x2+(y+4)2=9外切;
(2)经过点(3,0)和(0,3).圆心在直线x+y-4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$绕其起点沿逆时针方向旋转θ角得到向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转角得到点P.
(1)已知平面内点A(1,2),点B(1+$\sqrt{2},2-2\sqrt{2}$).把点B绕点A沿逆时针旋转$\frac{π}{4}$后得到点P,求点P的坐标;
(2)设平面曲线C上的每一点绕坐标原点沿逆时针方向旋转$\frac{π}{4}$后得到的点的轨迹是曲线x2-y2=3,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),A1,A2是双曲线实轴的两个端点,MN是垂直于实轴所在直线的弦的两个端点,则A1M与A2N交点的轨迹方程是(  )
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为$\frac{π}{3}$,则f(x)的最小正周期为π.

查看答案和解析>>

同步练习册答案