精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4
,求a;
(Ⅱ)设f(x)的导函数是f′(x),在(Ⅰ)的条件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
分析:(1)利用导数的几何意义,k=f′(1)求解即可;
(2)要求f(m)+f′(n)的最小值,只需求f(m)和f′(n)的最小值,从而转化为求f(x)在[-1,1]上的最小值和f′(x)在[-1,1]上的最小值,按求函数最值的步骤求解即可.
(3)存在x0∈(0,+∞),使f(x0)>0,即f(x)在(0,+∞)上的最大值大于0,故先求导,然后分a>0和a≤0两种情况分别讨论f(x)在(0,+∞)上的最大值情况即可.
解答:解:(Ⅰ)∵f'(x)=-3x2+2ax(1分),
由已知f′(x)=tan
π
4
=1
,即-3+2a=1(2分),
∴a=2(3分);

(Ⅱ)由(Ⅰ)知f(x)=-x3+2x2-4(4分),
f′(x)=-3x2+4x=-3x(x-
4
3
)
(5分),
x∈[-1,1]时,如下表:
精英家教网(7分)
可见,n∈[-1,1]时,f′(x)最小值为f′(-1)=-7,
m∈[-1,1]时,f(m)最小值为f(0)=-4,
∴f(m)+f′(n)的最小值为-11(10分);

(Ⅲ)∵f′(x)=-3x(x-
2a
3
)

(1)若a≤0,当x>0时,f′(x)<0,
∴f(x)在(0,+∞)单减,
又由f(0)=-4,则x>0时f(x)<-4,
∴当x≤0时,不存在x0>0使f(x0)>0(11分);
(2)若a>0时,
0<x<
2a
3
时,f′(x)>0.当x>
2a
3
时,f′(x)<0

∴f(x)在(0,
2a
3
]
上单增,在[
2a
3
,+∞)
单减;
∴x∈(0,+∞)时,f(x)max=f(
2a
3
)=
4a3
27
-4
(12分),
由已知,必须
4a3
27
-4>0∴a3>27

∴a>3,
即a>3时,存在x0∈(0,+∞)使f(x0)>0.
点评:本题考查了导数的运算,导数的几何意义,利用导数求函数的最值等知识点,涉及了分类讨论的数学思想,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案