精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log (a5+a7+a9)的值是(
A.﹣
B.﹣5
C.5
D.

【答案】B
【解析】解:∵数列{an}满足log3an+1=log3an+1(n∈N*), ∴an+1=3an>0,
∴数列{an}是等比数列,公比q=3.
又a2+a4+a6=9,
=a5+a7+a9=33×9=35
则log (a5+a7+a9)= =﹣5.
故选;B.
数列{an}满足log3an+1=log3an+1(n∈N*),可得an+1=3an>0,数列{an}是等比数列,公比q=3.又a2+a4+a6=9,a5+a7+a9=33×9,再利用对数的运算性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

)求圆的方程;

)若过点,且斜率为的直线与圆有两个不同的交点.

)求实数的取值范围;

)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是,并且经过点,抛物线的顶点在坐标原点,焦点恰好是椭圆的右顶点.

求椭圆和抛物线的标准方程;

已知点为抛物线内一个定点,过作斜率分别为的两条直线交抛物线于点,且分别是的中点,若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为 的中点, 为线段的动点,过的平面截该正方体所得的截面记为,则下列命题正确的序号是_________.

①当时, 的面积为

②当时, 为六边形;

③当时, 的交点满足

④当时, 为等腰梯形;

⑤当时, 为四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,cos2x), =(sin2x,n),设函数f(x)= ,且y=f(x)的图象过点( )和点( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an},定义 为{an}的“优值”,现在已知某数列{an}的“优值” ,记数列{an﹣kn}的前n项和为Sn , 若Sn≤S5对任意的n∈N+恒成立,则实数k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间和对称中心坐标;
(3)将f(x)的图象向左平移 个单位,再讲横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点在曲线上,若直线的斜率满足面积的最大值.

查看答案和解析>>

同步练习册答案