(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;
(2)将β1,β2用角度制表示出来,并在-720°—0°之间找出它们有相同终边的所有角.
思路分析:运用弧度与角度的互化公式,用待定系数法去找一个k,α1,α2化为2kπ+α的形式,而β1,β2化为k·360°+α的形式(k∈Z).
解:(1)∵180°=π rad,
∴-570°=-570×=.
∴α1==-2×2π+.
同理,α2=2×2π+.
∴α1在第二象限,α2在第一象限.
(2)∵β1==(×°)=108°,
设θ=k·360°+β1(k∈Z).
由-720°≤θ<0°,
∴-720°≤k·360°+108°<0°.
∴k=-2或k=-1.
∴在-720°—0°间与β1有相同终边的角是-612°和-252°.
同理,β2=-360°-60°=-420°,且在-720°—0°间与β2有相同的终边的角是-420°和-60°.
科目:高中数学 来源: 题型:
(1)将α1,用弧度表示出来,并指出它们各自所在的象限;
(2)将β1、β2用角度制表示出来,并在-720°~0°之间找出与它们有相同终边的所有角.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;
(2)将β1,β2用角度制表示出来,并在-720°—0°之间找出它们有相同终边的所有角.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)将α1、α2用弧度制表示出来,并指出其所在象限;
(2)将β1、β2用角度制表示出来,并在-720°—0°之间找出与它们终边相同的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com