精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为

)当时,求直线被圆截得的弦长

)当直线被圆截得的弦长最短时,求直线的方程

)在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

【答案】;(;(

【解析】试题分析:1的方程化为标准式可得圆心,半径根据点到直线距离公式以及勾股定理可得直线被圆截得的弦长;(2当所截弦长最短时, 取最大值,

圆心到直线的距离,令 利用配方法可得取最大值,弦长取最小值,直线上方程为,( ,当以为圆心, 为半径画圆,当圆与圆刚好相切时, ,解得可得点横坐标的取值范围为

试题解析:( )圆的方程为,圆心,半径

时,直线的方程为

圆心到直线的距离

弦长

∵圆心到直线的距离

设弦长为,则

当所截弦长最短时, 取最大值,

,令

时, 取到最小值

此时 取最大值,弦长取最小值,

直线上方程为

)设

当以为圆心, 为半径画圆,当圆与圆刚好相切时,

解得

由题意,圆与圆心有两个交点时符合题意,

∴点横坐标的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从点P(4,5)向圆(x-2)2y2=4引切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知动直线过点,且与圆交于两点.

(1)若直线的斜率为,求的面积;

(2)若直线的斜率为,点是圆上任意一点,求的取值范围;

(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有.

(1)证明上是增函数;

(2)解不等式

(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.记为同时满足下列条件的集合的个数:

②若,则③若,则

则(___________

的解析式(用表示)___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究性学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1 人作为代表发言.设每人每次被选中与否均互不影响.

1求两次汇报活动都由小组成员甲发言的概率;

2为男生发言次数与女生发言次数之差的绝对值,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的离心率为2,右焦点到它的一条渐近线的距离为

(1)求双曲线的标准方程;

(2)是否存在过点且与双曲线的右支角不同的两点的直线,当点满足时,使得点在直线上的射影点满足?若存在,求出直线的方程;若不存在,说明理由。

查看答案和解析>>

同步练习册答案