【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为.
()当时,求直线被圆截得的弦长;
()当直线被圆截得的弦长最短时,求直线的方程;
()在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
【答案】();();().
【解析】试题分析:(1)圆的方程化为标准式,可得圆心,半径,根据点到直线距离公式以及勾股定理可得直线被圆截得的弦长;(2)当所截弦长最短时, 取最大值,
圆心到直线的距离,令, ,利用配方法可得时取最大值,弦长取最小值,直线上方程为,( )设,当以为圆心, 为半径画圆,当圆与圆刚好相切时, ,解得或,可得点横坐标的取值范围为.
试题解析:( )圆的方程为,圆心,半径.
当时,直线的方程为,
圆心到直线的距离,
弦长.
()∵圆心到直线的距离
,
设弦长为,则,
当所截弦长最短时, 取最大值,
∴,令,
.
令
,
当时, 取到最小值.
此时, 取最大值,弦长取最小值,
直线上方程为.
()设,
当以为圆心, 为半径画圆,当圆与圆刚好相切时,
,
解得或,
由题意,圆与圆心有两个交点时符合题意,
∴点横坐标的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,已知动直线过点,且与圆交于、两点.
(1)若直线的斜率为,求的面积;
(2)若直线的斜率为,点是圆上任意一点,求的取值范围;
(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合,.记为同时满足下列条件的集合的个数:
①;②若,则;③若,则.
则()___________;
()的解析式(用表示)___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究性学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1 人作为代表发言.设每人每次被选中与否均互不影响.
(1)求两次汇报活动都由小组成员甲发言的概率;
(2)设为男生发言次数与女生发言次数之差的绝对值,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的离心率为2,右焦点到它的一条渐近线的距离为 。
(1)求双曲线的标准方程;
(2)是否存在过点且与双曲线的右支角不同的两点的直线,当点满足时,使得点在直线上的射影点满足?若存在,求出直线的方程;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com