精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCD-A1B1C1D1中,E、P分别是棱BC和CC1的中点
(1)求证:BD1∥平面C1DE;
(2)求证:平面A1B1P⊥平面C1DE.
分析:(1)连接CD1,交C1D于点O,由E是BC的中点,知O是CD1的中点,从而得到BD1∥OE,由此能够证明BD1∥平面C1DE.
(2)由A1B1⊥平面BCC1B1,C1E?面BCC1B1,知A1B1⊥C1E,∠B1C1O1=∠CEC1,∠C1B1O1=∠CC1E,且B1C1=C1C,从而Rt△B1C1P≌Rt△C1CE,由此能够证明平面A1B1P⊥平面C1DE.
解答:(1)证明:如图1,连接CD1,交C1D于点O,
∵E是BC的中点,O是CD1的中点,
∴BD1∥OE,
∵BD1?平面C1DE,OE?平面C1DE,
由线面平行的判定定理知BD1∥平面C1DE.
(2)证明A1B1⊥平面BCC1B1,C1E?面BCC1B1
∴A1B1⊥C1E,∠B1C1O1=∠CEC1
∴∠C1B1O1=∠CC1E,且B1C1=C1C,
从而Rt△B1C1P≌Rt△C1CE,
∴C1P=CE,C1E⊥B1P.
又∵A1B1∩B1P=B1,∴C1E⊥平面A1B1P.
∵C1E?平面C1DE,
∴平面A1B1P⊥平面C1DE.
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间想象能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点
(1)若F为AA1的中点,求证:EF∥面DD1C1C;
(2)若F为AA1的中点,求二面角A-EC-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、如图所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝山区二模)如图所示,在正方体ABCD-A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,平面BED1交棱AA1于点F.则下列命题中假命题是(  )

查看答案和解析>>

同步练习册答案