精英家教网 > 高中数学 > 题目详情

【题目】某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为 ),设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为(
A.
B.
C.
D.

【答案】D
【解析】解:∵三个电子元件的使用寿命均服从正态分布N(1000,502), ∴三个电子元件的使用寿命超过1000小时的概率为p=
设A={超过1000小时时,元件1、元件2至少有一个正常},
B={超过1000小时时,元件3正常},
C={该部件的使用寿命超过1000小时},
则P(A)=1﹣(1﹣ 2= ,P(B)=
故该部件的使用寿命超过1000小时的概率P(C)=P(AB)=P(A)P(B)= =
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=2sin( )(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则( + =(
A.﹣32
B.﹣16
C.16
D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的各项都是正数,且对任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn为数列{an}的前n项和.
(1)求证数列{an}是等差数列;
(2)若数列{ }的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 为锐角,角所对的边分别为,且

Ⅰ)求的值.

Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等差数列{an}中,a2=11,a5=5.
(1)求通项公式an
(2)求前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知( + n的展开式中,第五项与第七项的二项式系数相等.
(I )求该展开式中所有有理项的项数;
(II)求该展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.如果命题“¬p”与命题“p∨q”都是真命题,那么命题q一定是真命题
B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
C.若命题p:?x0∈R,x02+2x0﹣3<0,则?p:?x∈R,x2+2x﹣3≥0
D.“sinθ= ”是“θ=30°”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 底面 是棱上一点.

I)求证:

II)若 分别是 的中点,求证: 平面

III)若二面角的大小为,求线段的长.

查看答案和解析>>

同步练习册答案