精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|1≤x2<9},B={x|2x-4≥x-2},
(1)求A∩B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

分析 (1)分别化简集合A,B.再利用交集的运算性质可得A∩B.
(2)集合C={x|2x+a>0}=$(-\frac{a}{2},+∞)$,由B∪C=C,可得B⊆C.即可得出.

解答 解:(1)集合A={x|1≤x2<9}=(-3,-1]∪[1,3),B={x|2x-4≥x-2}=[2,+∞),
∴A∩B=[2,3).
(2)集合C={x|2x+a>0}=$(-\frac{a}{2},+∞)$,
∵B∪C=C,∴B⊆C.
∴$-\frac{a}{2}$<2,解得a<-4.
∴实数a的取值范围是(-∞,-4).

点评 本题考查了不等式的解法、集合运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若|a-c|<h,|b-c|<h,则下列不等式一定成立的是(  )
A.|a-b|<2hB.|a-b|>2hC.|a-b|<hD.|a-b|>h

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义|b-a|为区间(a,b)(a,b∈R,a<b)的长度.则不等式$\frac{3x-4}{{{x^2}+2x}}>\frac{1}{4}$的所有解集区间的长度和为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-2ax-2(a+1)(a∈R).
(1)求证:函数f(x)的图象与x轴恒有两个不同的交点A、B,并求此两交点之间距离的最小值;
(2)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.阅读如图的程序框图,输出的结果为65.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求以双曲线y2-3x2=12的焦点为顶点,顶点为焦点的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“圆柱与球的组合体”如图所示,则它的三视图是(  )  
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\sqrt{(x-\frac{\sqrt{6}}{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\frac{\sqrt{6}}{2})^{2}+{y}^{2}}$成等差数列,记(x,y)对应点的轨迹是C.
(1)求轨迹C的方程;
(2)若直线l:y=kx+m与曲线C交于不同的两点A,B,与圆x2+y2=1相切于点M.
①证明:OA⊥OB(O为坐标原点);
②设λ=$\frac{|AM|}{|BM|}$,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案