精英家教网 > 高中数学 > 题目详情
8.正项等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=-3,S2m-1=57,则m=(  )
A.38B.20C.10D.9

分析 根据等差数列的性质可得2am-am2=-3,从而求出am=3,利用等差数列前n项和公式得到S2m-1=(2m-1)am,由此能求出m.

解答 解:根据等差数列的性质可得:am-1+am+1=2am
则am-1+am+1-am2=2am-am2=-3,
解得:am=-1(舍)或am=3,
S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=3(2m-1)=57,
解得m=10.
故选:C.

点评 本题考查实数m的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知点A(0,1),向量$\overrightarrow{AC}$=(-4,-3),若向量$\overrightarrow{BC}$=(-7,-4),则B点的坐标为(  )
A.(-3,2)B.(4,5)C.(3,2)D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ax5-bx+|x|-1,若f(-2)=2,求f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{bn}满足b1=1,b2=3,bn=$\frac{{{b}^{2}}_{n-1}+2}{{b}_{n-2}}$(n≥3),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义在R上的函数f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$的图象关于原点对称.
(1)求a的值;
(2)判断f(x)的单调性,并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a<$\frac{1}{2}$,判断并用单调性定义证明函数$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对任意的两个实数a,b,定义$min(a,b)=\left\{\begin{array}{l}a,a<b\\ b,a≥b\end{array}\right.$,若f(x)=4-x2,g(x)=3x,则min(f(x),g(x))的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=$\sqrt{x}$-1n(x+a)(a>0)在(1,2)上单减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A、B、C分别为△ABC的三边a、b、c所对的角,△ABC的面积为S,且$\sqrt{3}abcosC=2S$.
(1)求角C的大小;
(2)若$c=\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

同步练习册答案