精英家教网 > 高中数学 > 题目详情

【题目】为奇函数,且实数

(1)求的值;

(2)判断函数的单调性,并写出证明过程;

(3)当时,不等式恒成立,求实数的取值范围。

【答案】(1) (2) 函数上单调递增(3)

【解析】试题分析:(1)由为奇函数,满足f(﹣x)+f(x)=0,代入可得a的值;

(2)对任意的,且,结合对数运算性质,判断f(x1)﹣f(x2)的符号,进而可得函数f(x)在x(1,+∞)时的单调性;

(3)若对于区间上的每一个x值,不等式恒成立, ,分析的单调性并求出最值,可得实数m取值范围.

试题解析:

(1) ,得,有,根据奇函数的定义域关于原点对称,有,解得

(2)函数上单调递增。证明如下:

对任意的,且,由

……(*),

,所以有

,有,又因为,有(*)式

为负,因此,即,

所以,函数上单调递增。

(3)时,由不等式恒成立,有

(2)上单调递增,又因为上单调递增,就有

上单调递增,当时, 上单调递增。要使恒成立,只需,解得,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费)。其中一组套餐变更如下:

原方案资费

手机月租费

手机拨打电话

家庭宽带上网费(50M)

18元/月

0.2元/分钟

50元/月

新方案资费

手机月租费

手机拨打电话

家庭宽带上网费(50M)

58元/月

前100分钟免费,

超过部分元/分钟(>0.2

免费

(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于的函数关系式;

(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C的两个焦点是F1、F2 , 过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.
(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】语句p:曲线x2﹣2mx+y2﹣4y+2m+7=0表示圆;语句q:曲线 + =1表示焦点在x轴上的椭圆,若p∨q为真命题,¬p为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)

查看答案和解析>>

同步练习册答案