精英家教网 > 高中数学 > 题目详情
16.已知f(x)满足f(x+2)=f(x)和f(-x)=-f(x),且当x∈(0,1)时,f(x)=3x-1,则f($\frac{2015}{2}$)=(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.-$\sqrt{3}-1$D.-$\sqrt{3}+$

分析 根据条件f(x+2)=f(x)得函数的周期是2,根据函数的周期性的性质将函数值进行转化求解即可.

解答 解:由f(x+2)=f(x)得函数的周期是2,
f(-x)=-f(x),得函数f(x)为奇函数,
则f($\frac{2015}{2}$)=f(1007+$\frac{1}{2}$)=f($\frac{1}{2}$),
∵当x∈(0,1)时,f(x)=3x-1,
∴f($\frac{1}{2}$)=${3}^{\frac{1}{2}}$-1=$\sqrt{3}$-1,
即f($\frac{2015}{2}$)=f($\frac{1}{2}$)=$\sqrt{3}$-1,
故选:B

点评 本题主要考查函数值的计算,根据抽象函数的条件,判断函数的周期性和奇偶性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.过椭圆$\frac{x^2}{2}+{y^2}=1$的右焦点的直线交椭圆于A,B两点,则弦AB的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{x-2}+\frac{1}{{ln({3-x})}}$的定义域为(  )
A.[2,3)B.(2,3)C.[2,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,bcosC=a-$\frac{1}{2}$c.
(Ⅰ)求角B的大小;
(Ⅱ)若b=1,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|3≤3x≤27},B={x|log2x>1}.求A∩B,(∁RB)∪A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,则2x-y的最大值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.
(2)已知椭圆$\frac{{x}^{2}}{8+k}$+$\frac{{y}^{2}}{9}$=1的离心率为$\frac{1}{2}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=cos2x的图象的一条对称轴方程是(  )
A.x=$\frac{π}{2}$B.x=$\frac{π}{8}$C.x=-$\frac{π}{8}$D.x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-1,g(x)=1+ax(a∈R),
(1)若a=-1,解不等式|f(x)|≤g(x);
(2)讨论关于x的方程|f(x)|=g(x)的根的个数.

查看答案和解析>>

同步练习册答案