分析 设P(x0,y0)代入抛物线方程,进而表示出|PM|,分别看当0<m<1和m≥1时,根据函数的单调性求得|PM|的最小值.
解答 解:设P(x0,y0)(x0≥0),则y02=2x0,
∴|PM|=$\sqrt{({x}_{0}-m)^{2}+{{y}_{0}}^{2}}$
=$\sqrt{{({x}_{0}-m)}^{2}+2{x}_{0}}$=$\sqrt{{{[x}_{0}+(1-m)]}^{2}+2m-1}$.
∵m>0,x0≥0,
∴①当0<m<1时,1-m>0,
此时有x0=0时,
|PM|min=$\sqrt{({1-m)}^{2}+2m-1}$=m.
②当m≥1时,1-m≤0,
此时有x0=m-1时,
|PM|min=$\sqrt{2m-1}$.
点评 本题主要考查了抛物线的应用.考查了学生对抛物线与函数问题的综合理解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{3}$ | B. | -$\frac{\sqrt{5}}{3}$ | C. | ±$\frac{\sqrt{5}}{3}$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
班级 | 1班 | 2班 | 3班 | 4班 |
人数 | 2 | 3 | 1 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com