精英家教网 > 高中数学 > 题目详情
7.过点(1,2)且与圆x2+y2=5相切的直线的方程是x+2y-5=0.

分析 求出圆的圆心为O(0,0),半径r=$\sqrt{5}$.设过P点的切线方程为y-2=k(x-1),利用点到直线的距离建立关于k的等式,解之得k=-$\frac{1}{2}$,即可得到所求圆的切线方程.

解答 解:圆x2+y2=5的圆心为O(0,0),半径r=$\sqrt{5}$.
根据题意,可得过P(1,2)的切线斜率存在,设其方程为y-2=k(x-1),即kx-y+2-k=0.
∵直线与圆x2+y2=5相切,
∴圆心O到直线的距离等于半径r,即d=$\frac{||2-k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,
化简整理得:4k2+4k-1=0,解之得k=-$\frac{1}{2}$,
∴直线方程为y-2=-$\frac{1}{2}$(x-1),化简得x+2y-5=0.
故答案为:x+2y-5=0.

点评 本题给出圆的方程,求圆经过定点的切线方程.着重考查了直线的方程、圆的标准方程和直线与圆的位置关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角A的值;
(2)若△ABC的外接圆直径为$\frac{4\sqrt{3}}{3}$,且b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,正确的是(  )
A.存在x0>0,使得x0<sinx0
B.“lna>lnb”是“10a>10b”的充要条件
C.若sinα≠$\frac{1}{2}$,则α≠$\frac{π}{6}$
D.若函数f(x)=x3+3ax2+bx+a2在x=-1有极值0,则a=2,b=9或a=1,b=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$),点M(3,m)在双曲线上.
(1)求双曲线方程;
(2)求证:MF1⊥MF2
(3)从双曲线的左焦点F1引以原点为圆心,实半轴长为半径的圆的切线,求切线与双曲线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4,5,6},A={1,2,5},B={2,3,4},则A∩(∁UB)=(  )
A.{2,6}B.{1,5}C.{1,6}D.{5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义域为R的函数f(x)以4为周期,且函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈(-1,1]}\\{2-|x-2|,x∈(1,3]}\end{array}\right.$,若满足函数g(x)=f(x)-mx(m>0)恰有5个零点,则m的取值范围为(  )
A.($\frac{\sqrt{15}}{15}$,$\frac{1}{3}$)B.[$\frac{1}{5}$,$\frac{\sqrt{15}}{15}$)C.($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$]D.($\frac{1}{7}$,$\frac{1}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设正项等差数列{an}的前n项和为Sn,其中a1≠a2.am、ak、an是数列{an}中满足an-ak=ak-am的任意项.
(1)求证:m+n=2k;
(2)若$\sqrt{{S}_{m}}$,$\sqrt{{S}_{k}}$,$\sqrt{{S}_{n}}$也成等差数列,且a1=1,求数列{an}的通项公式;
(3)求证:$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$≥$\frac{2}{{S}_{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\sqrt{3}sin(2x+\frac{π}{3})-2{cos^2}x+\frac{3}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,a,b,c分别为△ABC内角A,B,C的对边,且a=1,b+c=2,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在底面为正方形的四棱锥P-ABCD中,PA=PB=PC=PD=AB=2,点E为棱PA的中点,则异面直线BE与PD所成角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

同步练习册答案